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Abstract

Light-weight robotic manipulators get more affordable every year, and thus will be avail-

able to small enterprises and end-consumers sooner or later. This new audience demands

for intuitive robot operating and programming environments focusing on robust and safe

execution of robotic tasks. However, the currently available range of robotic software ar-

chitectures struggle in bridging the gap between usability and functionality. The software

framework and formalisms presented in this thesis build the foundation for proving task

execution properties to ultimately support certifiability of the system. While exploiting

the unique abstraction from real-time reflexes, safe and performant task execution is

achieved by employing powerful high-level task modeling mechanisms and incorporating

a novel formalization of component interaction. Structured operational semantics of the

coordination and component model allow for clear statements about execution sequence

and correctness of programmed robot tasks. Furthermore, the task modeling language

in conjunction with the proposed system architecture proved very successful in various

demonstrative scenarios. The results of this thesis represent an important first step to

an intuitive, feature-rich, but reliable and safe framework for programming light-weight

robots working in close co-operation with humans.
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Chapter 1

Introduction

1.1 Motivation

The focus of robotic system development is progressively shifting from big industry to

small and medium-sized enterprises (SMEs) and end consumer applications [44]. Various

manufacturers of robotic manipulators are pursuing this trend and new robots, capable

of safely working together with humans, are presented on a regular basis. Most of

these robotic systems are able to detect or even avoid unwanted contact with their

environment. Prominent examples are the light-weight manipulators LWR-III [35, 4, 11]

and iiwa [42] from KUKA, Baxter [56] developed by Rethink! Robotics or the PR2

from Willow Garage [28]. With all these versatile systems getting more affordable and

available to a broader public every year [57], the demand for intuitive software operating

these robots is increasing as well.

Unfortunately, programming industry-grade robots is still a very challenging task, re-

quiring quite some expertise in software-development and robotics. This leads to very

high integration and programming costs, as well as long installation times. By reducing

the set-up and reconfiguration times, higher efficiency and productivity on small batch

sizes could be achieved, rendering robotic automation feasible for SMEs. While robotic

middlewares [53, 17] have lowered the entry barriers for researchers and professionals by

providing interchangable and re-usable software components, there are still several dis-

tributed computers controlling a single robotic task, prone to laborious (re-)configuration

and long set-up times. To date, there does not exist a commonly accepted solution to

intuitive and flexible programming of complex robotic systems.

However, the paradigm of “Plug-and-Produce” is widely desired to increase efficiency

and lower integration time and cost. It is achieved by providing a self-explanatory

and flexible system, which is espressive, modular and extensible. Among other factors,
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simple and reusable online-programming are key-enablers to this paradigm for robotic

systems. As these light-weight robots work in close vicinity and even in cooperation

with humans, providing safe physical human robot interaction (pHRI) is of utmost im-

portance. Interaction control [5] and safety measures [20, 29, 49] for light-weight robots

promote the fence-less use of robots in direct coworking scenarios. Hence, the program-

ming environment should also account for these modern techniques and provide safety

on the program-level, as well as intuitive mechanisms for error-handling, and thus being

robust to task failures. After all, software used for operating and programming robots

is required to be certifiable in terms of correctness, security and safety. Consequently

software components controlling a robot can be validated and verified against these

properties via formal methods.

Robotic programming software partly fulfilling the outlined needs is currently only de-

veloped prototypical in academia (e.g. SMASH [12]) or for very simple robotic systems,

where safety and certifiability is not an issue (e.g. UrbiScript and Gostai Suite [8]).

Even though the programming paradigm of Rethink! Robotics is reasonably intuitive

and aims to solve most of the stated issues, it is thightly coupled to their robot Bax-

ter. The interface enables rapid development of “Pick ‘n Place” tasks via teaching by

demonstration on a very affordable platform and thus sets it into competition with

traditional industrial robots, but cannot capitalize from highly sensitive collision detec-

tion, low-level collision reaction, precise assembly via joint-torque control and further

safety features as realized with robots like the LWR-III. Similar issues exist with the

programming model of Universal Robotics UR5 [48]. While the robot itself does not

support advanced safety concepts of torque-controlled robot manipulators, the program-

ming model already enables low set-up time and easy (re-)configuration. However, to

be able to provide a straight-forward programming interface, the robot’s functionality is

reduced to a minimum and thus also restricts on possible application areas.

In conclusion, there is a significant lack of modular, certifiable, simple but flexible pro-

gramming interfaces for modern high-tech robots, featuring advanced manipulation,

safety and interaction modalities. This thesis introduces a system, which sets the foun-

dation for a sophisticated programming and operation environment, satisfying the iden-

tified needs of industry as well as end-users, and elaborates on developed techniques

necessary to realize this system called EMB.RACE.
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Figure 1.1: EMB.RACE system overview - separated into three parts:
RACE-Services, RACE-Core and RACE-Clients, with exemplary vi-
sion, motion planning, gripper and robot services, as well as the two
main clients RACE-Pro and RACE-One.

1.2 System overview

This section gives a coarse overview of the introduced EMB.RACE system, to better ab-

stract this work’s contributions. As already explained introductorily, a robot program-

ming and operating environment has to fulfill a variety of requirements. EMB.RACE

addresses these requirements by facilitating a dynamic, distribued and service-oriented

approach to robot programming, enabled by uniquely abstracting robot control and low-

level safety features [49]. The system architecture is schematically outlined in Figure 1.1,

clearly visualizing the separation into the three parts of RACE-Core, RACE-Clients and

RACE-Services, where the following paragraphs discuss the rationale for this separation.

Distributed system. The main use-cases of EMB.RACE are (re-)programming and

operating robotic systems. In order to execute a program, user interfaces should not

be required, but optionally available to visualize progress or change the program online.

To support stand-alone operation, as well as dynamically connected client instances,

a distributed approach is taken, where the RACE-Core component handles execution

and can serve multiple RACE-Clients. The separation of core and clients also allows

for different types of clients. Special user interfaces can be developed to target different

audiences (e.g. a simplified client for novice users), whereas other systems can connect to

core instances as client and process the execution model programatically (e.g. planning

systems).
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Robotic services. Tasks executed on a robotic system do not vary much in their need

for computational capabilities (sensors, actuators, algorithms, etc.), but usually require

a different configuration or logial sequence. Instead of re-implementing the logic for each

task in slightly different variants or call sequences, a separation of concerns into coor-

dination, computation, configuration and communication is typically made [54]. This

abstraction often leads to component-based architectures like most of today’s robot soft-

ware frameworks (detailed in Section 2.4). In EMB.RACE, these components are called

RACE-Services (computation), which can be dynamically accessed and parameterized

by the RACE-Core (coordination). Typically, such components only advertise a generic

interface, describing how they can be interacted with. RACE-Services go a step fur-

ther and also publish their service state, including how it is affected by the advertised

service functionality. To be able to communicate transparently over process and ma-

chine boundaries, either between RACE-Services or with the RACE-Core, a middleware

solution is employed (communication).

Execution model. As the RACE-Core coordinates several RACE-Services to fulfill a

certain robotic task, an appropriate formalism for modeling this coordination has to be

defined. The execution model holds information about program sequence, parameteri-

zation and which services have to be queried. It has to be expressive enough to realize

all required coordination methods (e.g. conditions or concurrency), but also easily un-

derstandable for both humans and artifical planners, as they interface the execution

model. Especially, for human task developers, a graphical representation of the coordi-

nation model improves usability and enables visual programming. EMB.RACE utilizes

a domain specific language (DSL) based on hierarchical finite state machine (HFSM)

models like Harel statecharts [33], UML state diagrams [13] or Simulink Stateflow [1].

The newly developed formalism is called RACE-Core Model (RCM) and provides simi-

lar functionality as the mentioned HFSMs, but also captures service interaction. Along

with clearly defined semantics, this incorporation of service communication benefits for-

mal analysis of the robotic task and ultimately leads to provable functional correctness,

which in turns increases general safety.

Re-usability and modularity. The separation of coordination, configuration and

computation capabilities also promotes re-usability and modularity of robotic tasks,

realizing faster switching between robot applications and task scenarios. Deploying tasks

on an existing hardware setup gets as easy as downloading and starting an application

on smartphones. By programming whole execution plans out of re-usable sub-tasks and

skills, such robotic applications can be created and distributed, where the additional

modeling of service interaction, enables EMB.RACE to create and execute tasks on

heterogenous robotic systems.
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1.3 Contributions and Outline

The contribution of this thesis is twofold: First, the RACE-Core Model (RCM) for-

malism for coordinating robotic systems is developed and presented as the execution

model employed in RACE-Core instances of the EMB.RACE system. This formaliza-

tion includes a mathematically defined syntax with graphical representation, intended

and formal execution semantics of RCM. Although influenced by previous prototypes,

the formalism was developed from the ground up in course of this thesis. Secondly, the

generic RACE-Service Model (RSM) gets introduced in order to formalize interaction be-

tween the executed model of the RACE-Core instance and coordinated RACE-Services.

While the development of these formalisms is comparable to related work in this field,

formalization of interactions between the coordination model and its environment has

not been proposed yet. The developed models are validated by analyzing expressive-

ness of syntax in various application scenarios. Furthermore, RCM and RSM semantics

are validated by rigorously comparing intended semantics and formal derivation trees

for constructed key scenarios. Although only included in the appendix, the proposed

formalisms were prototypically implemented and used to realize various demonstrative

robot applications.

The thesis continues with relevant background information in Chapter 2. The newly de-

veloped RACE-Core Model formalism is presented with its syntax, intended and formal

semantics, as well as language extensions in Chapter 3. Afterwards, service interaction is

introduced in Chapter 4 with the RACE-Service Model and necessary changes to RCM

syntax and semantics. Both models are validated in Chapter 5, where parts of the for-

mal derivation and demonstrator examples can be found in Appendix B. Finally, the

conclusion is given in Chapter 6.



6 1.3. CONTRIBUTIONS AND OUTLINE



Chapter 2

Background

The work presented in this thesis discusses, relates or refers to several contributions

in the topics of robot architectures in general, execution languages, formal analysis

and component-based methodologies for robot software development. Also, it is based

on previous research in robot control frameworks, safety and task coordination. The

following sections will give an introduction to these related topics and constitute the

background of this thesis.

2.1 Robot architectures

Software architectures empowering robotic systems have to solve unique challenges in-

troduced by the heterogenous nature of these systems or the unstructured environment

in which they operate. In order to fulfill certain tasks, robots need to establish commu-

nication between several different sensors and actuators, monitor execution of certain

actions and handle unexpected situations. While staying reactive, a robot shall also

accomplish a certain goal by deliberately executing appropriate sub-tasks.

Over time, a variety of different architectural styles have been developed, solving these

special needs of robotic software. A thorough overview of important design aspects

and the history of robotic system architectures is given in [41]. Considered as most

relevant for this work are systems pursuing a layered architectural style as they were first

introduced in [26] or [51]. A general version of the so-called three-tier (3T) architecture

is depicted in Figure 2.1.
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Figure 2.1: Typical three-tier (3T) architecture consisting of a be-
havior layer with basic and modular robot functionality; an executive
layer, which coordinates low-level behaviors; a planning layer, deciding
deliberately the robot’s actions - from [60, p.191]

Layered architectures

One of the these 3T architectures is the LAAS architecture of autonomous systems

(LAAS) [3]. It consists of three layers, namely the functional (behavioral) layer, an exe-

cution control layer and a decision (planning) layer, where the latter in turn consists of

possibly mutiple layers, each acting in different temporal resolutions. Particularly inter-

esting is the functional layer, which encapsulates robot action and perception algorithms

into controllable communicating modules. The modules are created with the generator

of modules (GenoM), which strongly relates to today’s popular component-based robotic

frameworks like Orocos [17] or ROS [53]. The most recently published GenoM3 [43] com-

ponent model is also discussed in Section 2.4. The execution control layer is responsible

for translating task requests from the decision layer into parameterized activations of

functional modules and handles conflicts between modules by prioritization. Lastly, the

decision layer consists of a planner and a supervisor, where the latter uses task plans of

the former to send requests to the lower levels. This means, that the supervisor system

named procedural reasoning system (PRS) takes the role of the executive as in other

architectures. That is, decomposing and selecting tasks, monitoring their execution and

reacting upon situations in a deliberate but time-bounded fashion (after lower levels may

already have executed a reflexive action).
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Another interesting architecture is the Coupled Layered Architecture for Robot Auton-

omy (CLARAty) [63] which was developed for operation of autonomous space rovers.

CLARAty is a 2T architecture consisting of a functional and a decision layer. Also in this

architecture, the functional level provides hierarchically decomposable abstractions via

modules for motor control, navigation, manipulation etc., while the decision layer com-

bines planning and execution capabilities for high-level decision-making. Although the

decision layer was designed to support numerous planning and executive approaches, the

commonly mentioned planner is Continuous Activity Scheduling Planning Execution and

Replanning (CASPER) [19, 40] along with the Task Description Language (TDL) [61]

and its corresponding executive. Together, they provide fast, reactive, but goal-driven

handling based on resource and execution monitoring. There were efforts of integrating

the Plan Execution Interchange Language (PLEXIL) with the accompanying Universal

Executive (UE) [62]. Which is worth mentioning here, as PLEXIL was one of the main

influences of RCM and gets introduced separately in the next section.

2.2 Coordination languages

The executive part of layered robot architectures is commonly responsible for translating

high-level plans into activations of low-level behaviors, invoking them in proper sequence

and parameterization, monitoring behavior execution and handling errors to some ex-

tent. To realize this reactive coordination, most executives utilize formalisms based on

hierarchical finite state machines (HFSM) representing behavior sequence and keeping

track of their execution. This section gives a short overview of prominent coordination

languages.

Harel statecharts

Finite state machines (FSM) are well-suited for modeling reactive, event-based systems

like robot coordination, but become unmanagable even for moderately complex systems.

Due to necessary redundancy (e.g. identical reaction on the same event in several states)

traditional FSMs are prone to the ‘state-explosion problem’, in which the complexity of

the model tends to increase much faster then the complexity of the modeled system.

The statecharts formalism introduced by Harel [33] addresses exactly this issue by mod-

eling similar behavior in hierarchical layers. Along with hierarchy, other mechansims

like parallelism (via orthogonal regions - commonly named as AND states), inter-level

transitions, history and local events, enable statecharts to model real-world reactive sys-

tems more faithfully than traditional FSMs.
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A variety of other formalisms are based on Harel statecharts and there even exist dif-

ferent semantics for statecharts themselves [64]. This is mainly because the semantics

of statecharts, as they were used in the ‘original’ STATEMATE environment [34], were

published years after the language’s syntax. However, a lot of research was conducted

on statecharts and they are still very popular. The decision against statecharts as coor-

dination language was made because some of its features impede compositionality and

generally obstruct the definition of units with clear interfaces for re-use.

UML state diagrams

The Unified Modeling Language (UML) [13], is a general-purpose formalism originating

from software-engineering, which allows to specify software-intensive systems in a vari-

ety of diagrams. These diagrams model software artifacts in their behavioral or static

structure, can be used for code generation or even get interpreted and are executable.

The state diagram is the UML equivalent to HFSMs and is based on Harel statecharts. It

features a similar syntax, although with some extensions, but provides slightly different

semantics. One of the strenghts of UML state diagrams is its object-oriented focus, which

is besides several semantic variation points (where implementations differ) the biggest

drawback for utilizing UML state diagrams as coordination language in the robotic

domain. The overall pursued ‘lower-first’ methodology (typical to classes specializing

their superclasses) does not capture robotic task coordination very well. Nonetheless,

due to its wide-spread acceptance, there are many efforts in formalizing the semantics

of UML (refer to Section 2.3), which proved very useful for the work presented here.

Simulink Stateflow

Simulink is a block diagram environment for system-level design, simulation and code

generation of embedded systems, where Stateflow is the graphical formalism for event-

based modeling used in Simulink [1]. The Stateflow language is also based on Harel stat-

echarts and provides near identical funtionality, but extends the syntax and semantics

with condition actions, inner transitions, as well as a different event processing mecha-

nism. Even though the high complexity, most of Stateflow semantics are formalized and

thus designs (including generated code) can be verfied and validated.

Early prototypes of the system presented in this thesis were implemented using Stateflow,

but the tight integration with Simulink complicates its use in robotic systems and the

desire for a more dynamic and flexible coordination language eventually motivated the

development of the RCM.
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rFSM

The restricted Finite State Machine (rFSM) is a recently developed coordination model

for robotic applications [39]. It adopts concepts from Harel statecharts and UML state

diagrams, by critically reflecting both approaches, and focuses on coordination of robot

functionality on a very low level, possibly running in hard real-time. The most significant

divergence to both models is, that rFSM discards parallelism and advocates the modeling

of concurrent functionality via distributed state machine instances. The reasons for this

design decision hint on a different kind of robotic system involved in these scenarios. The

approach of EMB.RACE allows to abstract low-level control and requires coordination

on a higher level. After all, the semantics of rFSM lack a formal definition and are only

described informally.

Urbiscript

The urbiscript language is an object-oriented scripting language tightly intregrated in

the Urbi framework and is used for programming robotic systems using the Gostai Studio

application [8]. It provides syntactic elements for concurrency and features a strongly

event-based paradigm. Although urbiscript is not directly a hierarchical state machine,

the development environment provides a hierarchical state machine representation which

gets translated to urbiscript. The exact semantics of the state machine formalism are

not publicly available, but seem to be similar to UML state diagram semantics.

PLEXIL

The Plan Execution Interchange Language (PLEXIL) is a coordination language devel-

oped by NASA aiming for a “compact, semantically clear and deterministic” execution

model [25, 9]. Besides the aforementioned CLARATy project, PLEXIL is used in variety

of systems, mostly concerned with autonomous rovers [27].

The language features a hierarchical composition of nodes, which are guarded by a set

of conditions (start, end, repeat, invariant, pre and post). The latter can be interpreted

as the equivalent of state transitions in HFSM models, but with a more comprehensive

guarding mechanism using these conditions. PLEXIL provides also assignment and

command node types to hold program logic for assigning values to variables of the defined

node interfaces or call external commands (interacting with the robot) respectively.

Despite its interesting syntax and semantics, the formalism lacks a graphical representa-

tion and concepts like concurrency are not intuitive. However, the formal semantics of

PLEXIL are well researched [22, 23] and served as a starting point for the formalization

presented in this thesis.
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2.3 Model checking and formal semantics

Verification and validation of hardware and software is crucial for safety critical systems

like robots directly interacting with humans. While validation processes check that a

system satisfies its requirements, verification is the evaluation whether a system works

like it is intended to.

Model checking is concerned with the algorithmic verification of a system by exhaustively

exploring the state-space of the system under consideration and checks whether a certain

property holds true in all system states. Being a model-based verification technique, it

requires a model describing the system behavior in a mathematically precise and unam-

biguous form. In fact, most inconsistencies, ambiguities or incomplete specifications are

discovered already when modeling the system, prior to verification itself [7].

As the model to check will be a coordination language, besides a defined syntax, formal

semantics are required to provide the foundation for checking language properties like

determinism, compositionality, run-to-completion or termination, as well as enabling

analysis of model instances. From Concrete Semantics by Nipkow and Klein [46]:

Why formal semantics? Because there is no alternative when it comes to

an unambiguous foundation of what is at the heart of computer science:

programs. A formal semantics provides the much needed foundation for their

work not just to programmers who want to reason about their programs

but also to tool developers (e.g. compilers, refactoring tools and program

analysers) and ultimately to language designers themselves.

There are three common semantic description methods, where these approaches are not

competing, but are different techniques for different purposes, and possibly for different

languages [45]:

• Operational. Describe the meaning of a program by individual steps and how

syntactic elements are executed.

• Denotational. Semantics are modeled as mathematical structures and only the

execution effects are considered.

• Axiomatic. The effect of executing language constructs are captured by asser-

tions which may ignore certain aspects of the execution.
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Semantics for coordination models

Formal semantics of coordination models (presented in the previous section) are typically

defined using the structured approach to operational semantics (SOS) as it was intro-

duced by Plotkin [52], which proved to be very flexible but intuitive [65, 32, 21, 22, 23].

Usually, SOS are defined on a labeled transition system (LTS) as the semantic domain,

whose states are the closed terms over the model syntax and the (semantic) transitions

of the LTS are inductively defined using rules of the form premises
conclusion [2].

2.4 Component-based robotics

Most modern robot software architectures and frameworks pursue a component-based

approach in modularizing computational capabilities to cope with the high system com-

plexity and requirements like safety, reliability or fault tolerance [15]. Some examples of

sophisticated component models are OROCOS/BRICS [17, 18], ORCA [14], GenoM3 [43]

or SmartSOFT [59, 58]. All these frameworks face the challenges of engineering the soft-

ware development process in robotics, with its high variability in algorithms, technologies

and application scenarios. As already mentioned in Section 1.2, a separation of these

challenges into four different design concerns is typically made, namely computation,

configuration, communication and coordination [54, 16]. Techniques from model-driven

engineering are used to guide the development process by encapsulating computational

capabilities, providing them with appropriate means of (re-)configuration and establish-

ing communication in-between. Also, component-based paradigms are strongly related

to service-oriented concepts [55, 47], where the terms component and service are used

interchangeably throughout this thesis.

2.5 Robot control and safety

The work presented in this thesis is partly based on previous research on safe robot

control and physical Human-Robot Interaction (pHRI) [30], where EMB.RACE is in-

tended to supersede the presented protoype for dynamic robot behavior programming.

The next paragraphs will elaborate on some relevant approaches of this research field.

Light-weight robot design. Robots interacting with their environment have to cope

with dynamic exchange of forces, which is achieved best by light structures featuring a

low reflected mechanical impedance. On the other hand, a light-weight robot is more

likely prone to intrinsic flexibility due to the components used, i.e. harmonic drive

gears. This requires, additional joint torque sensing and accurate flexible joint dynamics

modeling, which in turn, enable the detection of contact forces. The LWR-III robot
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developed at the Deutsches Zentrum für Luft- und Raumfahrt (DLR) [4] is one of these

light-weight, kinematically redundant, torque-controlled flexible joint robots, and got

commercialized by KUKA [11].

Interaction control. One of the most common control schemes used for controlling

direct physical interaction of flexible joint robots is impedance control [5]. The controller

imposes a desired physical behavior on the robot and is very robust against inflicted

external forces. For example, a robot can be controlled such that its end-effector behaves

like a compliant cartesian mass-spring-damper system. Furthermore, collisions of the

robot with its environment have to be detected by the control system in order to safely

react to them [20]. As for collision reaction strategies, a variety of different control

capabilities were developed, ranging from simple gravity compensation to more advanced

strategies like trajectory scaling [29].

Behavior and reflexes. Besides the selectively mentioned control paradigms, the de-

veloped Robot Control Unit (RCU) also provides features like virtual walls, real-time

motion planning or collision avoidance [49]. To switch between this vast amount of ca-

pabilities, a discrete action interface is used which defines an atomic robot action as a

tuple (command, behavior). While the command is nothing unusal (move or stop), the

behavior part of a robot action is a very complex data structure describing the opera-

tional and reflex behavior of the robot. The operational behavior expresses the robot’s

particular motion and disturbance response during nominal task execution. Reflexes,

on the other hand, specify a real-time reaction behavior on an activation signal (e.g.

collision with certain severety). The Task Control Unit (TCU) then uses this interface

to safely command the robot to execute task-relevant behavior.

Applications. The proposed safety features and the abstraction of robot control with

RCU/TCU proved very successful in a variety of use-cases. Application scenarios range

from co-operative bin-picking [31], interactive gesture-based tasks [24] to enabling robot

teleoperation via a brain-machine-interface [36]. Although very diverse in their nature,

these examples highlight the importance of pHRI in almost all scenarios of operating

robots in a fence-less environment.
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RACE-Core Model

As the underlying formalism of the RACE-Core execution, the RACE-Core Model

(RCM) captures coordination of all system components involved in a certain robotic

task. Unlike most execution models in robot software architectures, the RCM is decou-

pled from the concrete robot, which still plays an essential role in most tasks, but is

interfaced like any other service component (e.g. gripper or user-interface). This high-

level abstraction is only possible by utilizing a discrete, complex, yet powerful interface

to the low-level robot control framework [49]. Besides numerous robot control schemes

and algorithms, this framework provides low-level safety reflexes, which relieve the bur-

den of real-time coordination to provide safe robot operation. The focus of RCM as an

execution model shifts therefore from robot- to task-level coordination.

While previous prototypes were strongly influenced by shortcomings of the originally

employed Simulink Stateflow [1] model, the design process of the RCM was guided by

the following requirements:

Intuitive. The syntax of RCM has to be easily processable by both, humans and

machines, in order to support the planning process of the task. Hence, the model has

to be mathemtically defined, unambigous, and readily supporting the definition of a

formal semantics. Hierarchical finite state machines (HFSMs) are chosen as the basis

for the RCM language, because they can be graphically represented, are formally clear

and capture task structure very well. Moreover, the popularity of HFSM formalisms in

several domains (e.g. software engineering or business process modeling) is beneficial.

Reactive. The main purpose of RCM, and coordination languages in general, is to

execute certain program logic reactively on system events. These events can be caused by

the nominal behavior of the coordinated system, but may also correspond to erroneous

situations. Especially due to the high complexity of robotic systems, there are many

points of failure in typical robotic tasks, upon which the execution model should be
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able to react in time. Therefore, the modeling language should provide convenient and

powerful mechanisms to describe reactive functionality of the executed task.

Deterministic. The behavior of model elements has to be clear and stay deterministic

based on the syntacticly defined interface. This means, that no state should be hidden,

and results in a functional approach with limited side-effects (in the model). All required

parameters and produced results are explicitly defined for each model element, rather

than implicitly accessing data in a some context. At first, the necessity of defining

these interfaces or the limited access of functionality may seem laborious and impedes

usability. But, this approach not only benefits a clear (compositional) semantics, but

also forces task designers to properly abstract and separate functionality, which in turn

improves re-usability.

Concurrent. In order to coordinate multiple aspects of a task using the same execution

model simultaneously, some form of concurrency is required. The model needs to provide

an intuitive and explicit method for splitting a task into parallel threads of execution

and to synchronize this concurrent behavior.

Re-usable. The benefits of re-using already designed sub-tasks are obvious, but requires

a modular approach with stable interfaces and appropriate means of parameterization.

Furthermore, the re-use mechanism should be realized using an extension, which resolves

into instances of the core language, as the re-use semantics should not inflict any changes

to RCM execution semantics.

All these points did influence the design process of the RCM intensively and the next

sections will elaborate on these while introducing RCM with its syntax (3.1), intended

semantics (3.2), syntactic extensions (3.3) and formal operational semantics (3.4).

3.1 RCM Syntax

This section defines the syntactic classes of RCM mathematically and graphically. A form

of set notation is used, which proved convenient for the semantics definition presented

in Section 3.4. First, this notation is introduced hereafter, continuing with the formal

definition of model elements and their graphical representation, along with discussions

of made design decisions. The examplary scenario of robustly picking up an object is

considered throughout this section to graphically illustrate the use of introduced model

elements.
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3.1.1 Notation

In the used notation, instances of syntactic classes are comprised by instances of other

syntactic classes or defined sets. For example, let A and B be artifical sets with elements

a and b. Then another syntactic class is defined as X = (A× B), specifying the syntax

of elements x as tuples of the form (a, b). One could say that an element of X contains

(or refers to) an instance of A and B each.

Element References

So far, the notation defines the syntactic structure, but in order to model all syntactic

relationships of RCM, not only single instances have to be referred to, but also optional

relations 0..1 and sequences with cardinality 1..n or 0..n.

To achieve this, special sets are defined for all three representations. Given a set A,

let A0 = A ∪ ∅ and let An be the set of all n-sized sequences over A.

Then A! =
n∈N⋃
i=1
Ai and A∗ =

n∈N⋃
i=0
Ai can be defined.

Functions

Another convenient notation, which simplifies syntax and semantics definitions signifi-

cantly is: given sets A,B with instance a ∈ A and a function f : A → B, the notation

f(a) ∈ B or even shorter a.f ∈ B is used. Finally, functions may also be defined using

this notation (besides other typical constructs, like the set-builder notation). For ex-

ample: a.f = {b | ∀b ∈ B, b.g = true} defines the function f : A → B to contain all

elements of B, which are mapped to true by another function g : B → {true, false}.

3.1.2 Model elements

The syntax of RCM consists of eight syntactic classes, namely: State, Barrier, Port,

Function, Condition, Action, Parameter and Result. Figure 3.1 illustrates the relation-

ships of these model elements using a (UML) class diagram related notation, where pa-

rameters and results are left out because their relations are straight-forward considering

Definition 3.1. The auxiliary model class Node is defined as N = S ∪ B to conveniently

abstract common concepts of state and barrier, but is not considered as a syntactic class

on its own. Finally, let ID = IDS ∪ IDB ∪ IDsvc be the set of distinct state, barrier

and service identifiers, V be a set of variable names and C be a set of valid (constant)

values which might get assigned to variables, where type-safety is assumed. The boolean

set is denoted as I = {true, false}.
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src

1

ports

0..n

children

0..n
first

0..1

entry0..1

exit0..1

actions0..n cond

1cond

1

func

1

out

0..n

dst0..n

in0..n

Node

Barrier State

ActionFunction Condition

Port

Figure 3.1: Relationships of RCM elements, parameters and results are
left out for the sake of simplicity

States s ∈ S ⊂ N are the central element of the RCM, encapsulating functionality and

possibly consisting of other states:

Definition 3.1 (State).

S = (IDS × PA∗ ×RE∗ ×F0 ×F0 ×A∗ ×N ∗ ×N 0 × P∗ × I) (3.1)

Besides the required identifer name(s) ∈ IDS , a state is comprised of parameters(s) ∈
PA∗ and results(s) ∈ RE∗, entry(s) ∈ F0 and exit(s) ∈ F0 functions, a set of

actions(s) ∈ A∗ and possible children(s) ∈ N ∗, of which, one is designated as first(s) ∈
N 0. Finally a state has a set of ports(s) ∈ P∗ and its activation state is described by

the relation active(s) ∈ I.

For convenience, additional functions are defined:

parent(s) = {sp | ∃sp : s ∈ sp.children}

descendants(s) = {c ∪ c.descendants | ∀c ∈ s.children}

siblings(s) = {c | ∀c ∈ (s.parent.children \ s)}

The graphical representation of a state is introduced in Figure 3.2, which shows an

examplary state Grasp. The state model element is illustrated by a rectangle with

rounded corners, where at least the name is shown in the first section. If the state

instance holds further information like parameters, results or functions, they are listed
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in the text section beneath the caption. The exemplary scenario of robustly picking an

object, will be used throughout this section to introduce all syntactic elements.

params: (width, 0.05)

results: actual width

Grasp

Figure 3.2: Grasp state example which takes a desired width as pa-
rameter and provides an actual width as result value

Parameterization

Every state has an interface consisting of parameters pa ∈ PA and results re ∈ RE ,

which syntacticly defines required and provided values respectively.

Definition 3.2 (Parameter).

PA = (V × (V ∪ C)× C) (3.2)

Parameters are described by a locally (in each state) unique name(pa) ∈ V and an

expression expr(pa) ∈ (V ∪ C) which is either a variable specifying another parame-

ter/result as source or a constant (default) value. The resolved value of a parameter is

denoted with property value(pa) ∈ C.

Definition 3.3 (Result).

RE = (V × C) (3.3)

Results have a locally unique name(re) ∈ V, and store a value(re) ∈ C during execution.

Parameters and results allow the explicit specification of a state’s interface. The value of

a parameter can either be constant (pa.expr ∈ C) or derived from another parameter or

result (pa.expr ∈ V). The latter version would allow to use any arbitrary parameter as

origin and thus, gets syntacticly constrained to parental parameters or results of siblings

∀pa ∈ s.parameters:

expr(pa) ∈ (Vparent ∪ Vsiblings ∪ C)

with

Vparent = {pa.name | ∀pa ∈ s.parent.parameters} and

Vsiblings = {re.name | ∀re ∈ sib.results, ∀sib ∈ s.siblings}.
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Functionality

Every state may specify some sort of functionality or behavior in terms of entry and exit

functions, as well as a set of actions. Condition and function classes are defined using an

abstract function language, as it is also done in other formalisms [32, 65]. This approach

is common as it simplifies both syntax and semantics by only considering modeled effects

of the function as a whole.

The main purpose of functions in RCM is to coordinate RACE-Services in their respec-

tive functionality, where these services provide a set of operations, as well as a variety

of events, possibly holding received data. Although the definitions of services, condi-

tions and functions will get refined when modeling service interaction in Chapter 4, a

preliminary definition is required to introduce state functionality.

Definition 3.4 (Service).

SVC = (IDsvc × V∗ × V∗) (3.4)

Each service svc ∈ SVC provides a unique service identifier name(svc) ∈ IDsvc, a set of

operations(svc) ∈ V∗ and a set of events(svc) ∈ V∗, where the names of operations and

events are distinct. Operations may fail with an error or provide a result, while events

hold data when received.

Definition 3.5 (Condition). A boolean condition bc ∈ BC is defined as expression,

written in a function language and evaluating to a boolean value I = {true, false}.

Definition 3.6 (Function). A function f ∈ F is a compound of several function language

statements, where each statement may access and possibly change variable values.

Definition 3.7 (Action).

A = (BC × F) (3.5)

is the set of conditioned functions a ∈ A, with cond(a) ∈ BC and func(a) ∈ F being the

associated boolean condition and function of an action.

Even though functions and conditions do not (yet) capture whether they call any service

operations or process event data, the functionality provided by services may already

be used by an RCM element. Section 3.2.2 will introduce the function language as

part of the intended semantics of RCM more clearly, but to legitimate the existence

of conditions and functions as syntactic elements, some examples are listed hereafter

and the exemplary Grasp state is extended with some demonstrative functionality in

Figure 3.3.
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params: (width, 0.05)

results: actual width

entry: svc.gripper.grasp(par.width)

actions:
- cond: svc.gripper.grasp.result

func: res.actual width = svc.gripper.grasp.result

Grasp

Figure 3.3: Grasp state with functions and actions, which call the
gripper service operation grasp and write result actual width on
response (assuming the value is stored in the operation result)

Condition examples:

1. Accessing parameters:

par.value > 100

2. Accessing results:

res.score == 0

3. Checking availability of operation results (grasp of service gripper):

svc.gripper.grasp.result

Function examples:

1. Processing parameters and results:

res.score = par.a + par.b

2. Using local variables and accessing results (of child Calc):

child_result = chi.Calc.res.value

res.value = child_result * par.input

3. Calling operations of service components (grasp of service gripper):

if(par.grasp == True):

svc.gripper.grasp(par.width)

It is worth mentioning that these syntactic elements provide a fine-grained and power-

ful mechanism to react on certain events in the robotic system. Furthermore, a state

models deliberately a reactive set of actions, which shall be executed by the system, as

opposed to statechart-based formalisms, where executed actions may be specified (also)

on transitions between system states (e.g. Stateflow [1]).
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params: (position, [0,0,0]), (width, 0.05)

Pick

success
chi.Grasp.port.success

error
svc.robot.collision

params: (position, par.position)

entry: svc.robot.move(par.position)

Move

success
svc.robot.move.result

params: (width, par.width)

results: actual width

Grasp

success
svc.gripper.grasp.result

Figure 3.4: Composite state Pick holds children Move and Grasp,
where Move is the first state of Pick. Both child states are param-
eterized by their parent and the success port condition depends on
Grasp’s success port

Composition

The state properties children and first result in a hierarchy of states, in which each

state may be composed of child states or barriers (introduced in Definition 3.9). Besides

this hierarchical composition, states define with their ports also a sequential composition,

where the latter is defined as:

Definition 3.8 (Port).

P = (V × S ×N 0 × BC × I) (3.6)

Every port p ∈ P has a locally unique name(p) ∈ V, a required source state src(p) ∈ S,

an optional destination node dst(p) ∈ N 0 and a boolean condition cond(p) ∈ BC. The

activation status of a port is denoted in active(p) ∈ I.

As specified by the property src, ports are associated with exactly one state. Thus,

ports of a state s comprise an explicit interface of possible outcomes of this state. Each

of these outcomes may represent a different situation, in which the state was left. The

property dst then designates the next state, which gets activated once the port triggers

on the condition specified in cond. The transition semantics are formally defined in

Section 3.4.
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Both, hierarchical and sequential composition are represented by the graphical model of

a state and its ports, as seen in Figure 3.4. In case of a composite state, its children

are placed in the area beneath defined parameters, results, functions and actions. Ports

are illustrated as rectangles on the border of a state and the optional destination is

connected by an arrow. Port conditions are written in monospace under the port name.

The first state of a composition is denoted by a transition from the composite state itself

to one of its children, where ‘exiting’ ports (port condition of parent port depending on

child port activation) may be indicated graphically by a dashed transition line. Because

of the sometimes limited space, details like port conditions, functions or actions may get

omitted in the graphical representation, like it is the case for the exemplary Grasp state.

In order to define a consistent hierarchy, the following constraints have to be imposed

on states and ports:

• s /∈ s.descendants

• s.first ∈ s.children

• c.parent = s, ∀c ∈ s.children

• p.src.parent = p.dst.parent

have to hold ∀s ∈ S and ∀p ∈ P.

The last constraint prohibits inter-level transitions, where this decision was made to

improve compositionality. As outlined in [64], inter-level transitions (along with the

history mechanism) impede the definition of compositional semantics. Furthermore,

having strictly level transitions promotes syntactic interfaces provided by parameters,

results and ports of a state. This, in turn, allows to implement re-usability mechanisms

very easily as described in Section 3.3.

Concurrency

One of the main requirements of RCM, as stated in the beginning of this chapter, is the

effective coordination of multiple distributed components in a robotic system. In order

to fulfill this requirement, concurrent behavior has to be represented by the model. For

this purpose another model element is defined:

Definition 3.9 (Barrier).

B = (IDB × P∗ × S∗ × P∗) (3.7)
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B1

S1

B2

S2

S3

B1

S1

S2

S3

Figure 3.5: Exemplary barrier chain (left) and corresponding single
barrier element (right)

Where a barrier b ∈ B specifies a name(b) ∈ IDB, inbound ports in(b) ∈ P∗ as well as

outgoingly connected states out(b) ∈ S∗. The activation state of a barrier is described

by active(b) ∈ I and the set of already activated ports activated(b) ∈ P∗.

Using properties in and out, barriers can be connected in between any port-state se-

quence. The intended functionality of a barrier is, that it activates all outbound states

concurrently, after all inbound ports were activated (further discussed in Section 3.2).

As opposed to the dst property of ports, barriers may only specify transitions to states

and not to other barrier instances. This decision was made because the semantics of a

barrier chain would be roughly equivalent to a single barrier element, which connects

all outgoing states itself. In fact, the only difference between these two alternatives

(shown in Figure 3.5) exist in formal micro level semantics (Section 3.4) and are not

straight-forward and possibly counter-intuitive.

An alternative way of modeling concurrency are orthogonal regions, as it is the case in

Harel statecharts [33] or UML state diagrams [13], where the latter also defines barrier el-

ements. The region approach integrates better with composite states, as they are simply

extended with region syntax and semantics, but forcibly introduces additional hierarchi-

cal levels. States have to be composed in a separate hierarchy level in order to activate

them concurrently and synchronization is only possible by leaving the composition.

By using the barrier model element, concurrency gets modeled explicitly and parallel

threads in a state are obvious. Especially in the graphical model, concurrency can be

seen at first glance (the model in Figure 3.6 uses a barrier element to enable the states

Haptic and Display simultaneously). However, orthogonality of concurrent behavior

(e.g. parallel threads of execution competing on state activation) is not enforced and

it has to be checked (see Chapter 5) whether any constraints or even the developer’s

intention get violated.
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Pick

success
chi.Grasp.port.success

error
svc.robot.collision

Collision

success
chi.Haptic.port.succes OR

chi.Display.port.success

Move

success

Grasp

success

Haptic

success

Display

success

Figure 3.6: Complete example of a Pick task with handling of robot
collisions, where details on parameterization and functionality are ab-
stracted away for the sake of brevity

Summary

To summarize the introduced model elements, Figure 3.6 shows the complete Pick task,

with its sub-states Move and Grasp, as well as an additional state Collision, which

handles robot collisions as indicated by the port condition svc.robot.collision. As

this example is based on a typical setup of EMB.RACE, where the robot reacts on

collision using real-time reflexes [49], it is assumed that the safety relevant handling of the

collision already occured when the coordination is in state Collision. The functionality

of Collision consists of two alternative interaction schemes to re-enable the Pick task:

haptic interaction with the robot or input via the user interface on a display. Both

modalities are available at the same time as modeled by a barrier which branches into

the two respective states Haptic and Display. When either one of these states exits

via its success port, the state Collision also exits on port success as defined in the

corresponding port condition.

This example also illustrates one of the most common problems in the robotics domain:

Exception (collision) handling presented in the example could also be implemented on the

level of state Move, or on a higher level, where multiple states like Pick are composed

into a complex task. Designers of robotic applications have to decide whether such

situations are handled either on local or global levels in the task hierarchy. This topic

gets further discussed in Section 3.3 when introducing a mechanism which supports task

developers in handling these cases on task-level.
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3.2 Intended semantics

While the syntax of a language defines its static structure and how elements may be

composed, semantics assign a meaning to these model elements and describe their be-

havior. Hence, the intended semantics describe intended and thus expected functionality

of certain model elements. Often this intention is captured informally in prose or with

diagrams, which do not suffice to unambiguously formulate model properties and rigor-

ously check adherence to these properties (as opposed to formal semantics). However,

an informal description of the intended meaning of language elements gives already a

good understanding of said functionality.

As for RCM, this is introduced in four parts: First, the scope concept is defined and

it is explained how functions and conditions written in a function language may ac-

cess it. Next, the execution semantics of RCM are described by the taken steps when

transitioning between states. Finally, topics concerning processing of events and service

interaction are discussed.

3.2.1 Scope

The scope is a compound of internal and external information and is locally defined

for each node in the state hierarchy and thus limits the influence a model element can

have. Ports are provided with the scope of their source state. Figure 3.7 illustrates this

by showing an example state hierachy with its associated scopes as triangles. With a

given scope, all semantic values of the state belonging to it may get accessed, as well as

activation information of the state’s ports. Children of the scope state may be queried

for their parameters, results and activation information, which includes whether a port

is active or not.

Utilizing the scope, the behavior of following model elements can be defined:

• Conditions may read all aforementioned values of a scope to evaluate.

• Functions, on the other hand, can additionally change results and/or local variables

when they are invoked.

• Actions are functions with a condition associated to a state and they are executed

everytime when their condition evaluates to true while the state is active.

• Port conditions determine when the corresponding Port has to activate and trigger

a transition to its destination node, also only when their source state is active.
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Figure 3.7: Scopes in an RCM state-hierarchy with associated ports,
where the triangle shape indicates accessible model elements and thus
represents a scope’s influence. For example, the top-most (purple)
scope belongs to s1, to which it provides full access, whereas of s2 and
s3 only parameters, results and (port) activation status are accessible.

3.2.2 Function language

As already stated in Section 3.1, the syntax of functions and conditions is defined with

an abstract function language. This language is used to define the syntax of a function or

condition and therefore has to be able to access scopes as well. Typically, an imperative

language is chosen to describe in a sequence of statements, what effects the function

should have. To illustrate the intent of this approach, some example function statements

which access the scope of a state, are presented hereafter in the imperative language

Python1:

Listing 3.1: Function language - parameters, results and local variables

par.value < 100

res.value = par.value * par.value

res.error = True

var.data = par.value

var.data == ’case1’ or var.data == ’case2’

Listing 3.2: Function language - children

chi.Move.active == True

chi.Move.port.success

chi.Monitor.res.value > 100

1Python Language Reference, version 2.7 available at http://www.python.org

http://www.python.org
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Listing 3.3: Function language - services

svc.gripper.grasp (0.05)

svc.gripper.grasp.result

svc[par.robot].move.error

svc[par.robot]. state.collision == True

In the used instantiation of the function language, parameters, results, variables and

services are accessed via the reserved identifiers par, res, var and svc respectively.

Concrete instances in these collections can be queried using dot notation or via the

array-access operator [], where the latter is intuitive to use when for example the ser-

vice to use is parameterized by an identifier as well (see Listing 3.3). Furthermore,

any Python functionality could be imported, but allowed module and operations will

be whitelisted to support the developer not to block the process and encourage asyn-

chronous programming where possible.

3.2.3 Execution

Every RCM state is executable, where execution denotes the evaluation of a state and

referred model elements as specified in the state’s syntax. In order to execute a state

it has to be specified in what sequence and how these model elements are evaluated.

Even though the execution process is primarily defined by state transitions, describing

the progress of a model, it also includes the coordinated invocation of specified actions,

entry- and exit-functions.

The intended execution semantics can be described best by enumerating and assigning

semantics to the model elements involved in the sequential composition of a state:

Port. While the source state of a port is active, it gets activated when the associated

port condition evaluates to true. Once a port gets activated, the corresponding source

state deactivates, the destination (either a state or barrier) gets activated and the port

itself gets deactivated afterwards.

State. A state can be deactivated by its parent or one of its ports, which first leads

to deactivation of all children (states and barriers), followed by invocation of the state’s

exit function. On activation, the entry function gets executed before the first child gets

activated. Whenever a child state of a composition gets activated, the child’s parameters

have to be resolved first in the parent scope. Only when all parameters are provided

with values, a state may get activated. While active, states evaluate their actions and

execute them if the condition is fulfilled, before possible transitions of child ports or

barriers are considered. However, port activations precede propagation to child states.
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Barrier. Every barrier keeps track of inbound port activations via the property acti-

vated. When all connected ports have been activated, the barrier activates as well. This

results in the simultaneous activation of all outgoing states and the barrier deactivates

afterwards.

As already pointed out in some cases, the precedence of evaluation is top-down, which

means, that conditions and thus transitions of upper layers in the state hierarchy are

considered first and may preempt evaluation of lower levels. This precedence based

on the hierarchical structure is often referred to as structural priority [34, 39] and is

defined for most HFSM based formalisms because it decreases non-determinism caused

by conflicting transitions (the semantics of UML even define lower-first priority). The

example of Section 3.1, as shown in Figure 3.4, contains a typical configuration, when

these semantics are necessary: Port success of composite state Pick depends and triggers

on activation of a child port. The parental port has to be evaluated first and thus preempt

any active children, before the child port deactivates, which could in turn result in a

transition and activation of another state.

Evaluation order is an issue, which might not be clear from the informal description

provided so far. The preemption mechanism via structural priority already solves most

of the transition conflicts, where two or more ports would activate at the same time,

i.e. the cases with different hierarchical levels. However, if conditions of two or more

ports of the same state evaluate to true at the same time, the decision which port

gets activated and transitions is prone to non-determinism. Usually, this issue is solved

by requiring mutually exclusive guard conditions or by assigning priority numbers to

possible conflicting elements, here ports.

Consequently, this issue can be generalized and also applies to multiple actions of a

state which could have simultaneously fulfilled conditions, or the evaluation order of

children, i.e. which child port gets transitioned first when multiple are active. The

current approach of dealing with this problem is, to use inherent indices originating

from collections used in the implementation. But as these indices are not intuitive

to the task designer, explicitly assigned priorities might have to be introduced at some

point. The mentioned scenario gets analyzed with more detail in Chapter 5 by validating

intentional and formal semantics of RCM in such situations.

3.2.4 Processing

Practically all RCM instances interact with services by calling operations or processing

operation results and service events. Service interaction is a core part of RCM as it

is the equivalent to the event mechanism in traditional finite state machine formalisms

(e.g. Harel statecharts) and thus essential for progressing the coordination model. Fur-
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thermore, conditions correspond to guards and triggers of statecharts at the same time,

enabling both, port activations and action execution in RCM. Hence, the model pro-

gresses only in response to received stimuli from services and does not transition if no

such input is present.

The synchrony hypothesis was introduced by the developers of Esterel [10] and assumes,

that a system reacts immediately on external events and creates its output instanta-

neously. This also includes the requirement, that any calculations, function calls, com-

munication or data handling take no time. However, the synchrony hypothesis also

states, that reactive tasks do not have to be exected in zero time, but it suffices to react

in time, i.e. before the next system event occurs. This means, that events from the

environment are processed faster than they occur. As a consequence, the environment

remains invariant while the system processes an event.

According to [33, 34], statecharts comply with the synchrony hypothesis in an asyn-

chronous time model where every transition takes zero time, while other formalisms

describe similar semantics. Furthermore, run-to-completion semantics are defined for

most coordination models, stating that processing of an event has to be completed first,

in order to react on the next event.

As for RCM, received data from services gets only processed when the model has reached

a complete state after handling all port activations and action executions. In between

these so-called macro steps, the model gets evaluated against an invariant snapshot of

the environment, where the local copy of the environment holds current operation results

and received event data of all currently available services. All executed functions may

not be long-blocking and asynchronous versions of data handling or communication are

required to stay reactive and conform to the synchrony hypothesis.

3.3 Syntax extensions

The heavy use of explicit interfaces, like parameters and ports, results in a fully composi-

tional syntax (and semantics) of RCM and supports the definition of syntactic extensions,

also called syntactic sugar. These extensions may form a new langauge, which can be

translated into native RCM syntax before execution.

3.3.1 Re-usability

In order to provide re-usable program components, RCM has to cope with re-utilization

of certain states and even entire state hierarchies. The intended use of this mechanism is

to provide a set of prebuilt modules in the programming environment, from which new
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Figure 3.8: Re-use syntax extension: the linked state s1 (left) gets
expanded when translated into native RCM syntax (right)

tasks and modules can be composed. Re-usability is implemented using one of these

aforementioned syntactic extensions, by introducing a link relation for states, which refer

to another state (hierarchy) and expands to the referred elements when translated into

native RCM. Formally, this is modeled by extending the syntax of states (Definition 3.1)

with an additional relation link : S → S. An example is shown in Figure 3.8. The

advantage of this approach, is that RCM semantics do not have to cope with linked

states, but the functionality can still be provided in a convenient and integrated syntax.

3.3.2 Dynamic oracle

The domain of physical human robot interaction is characterized by many system events

upon which the task coordination has to react. The most classical example is that the

robot is executing a certain task, when a human operator interferes by interacting with

the robot. This interference is typically detected by the robot as a collision, which

even may get classified as intended or uninteded. However, the task of the robot gets

interrupted and task coordination has to deal with this unforseen and possibly erroneous

situation.

To handle interaction on a task-level, as opposed to deciding locally on different layers of

the currently executed state hierarchy, the task has to be able to get continued, aborted

or skipped afterwards. The most common method is to re-enter the interrupted state,

as achieved in various formalisms by some sort of History functionality. But as already

pointed out, different policies might be desired on re-entrance of a composite state, and

to achieve this, a mechanism called Dynamic Oracle gets introduced.

In general, said history mechanisms define state semantics based on the internal state

by considering the last active child state as an entry point. This impedes the composi-

tionality of state semanics by changing the combination of sub parts which constitute a
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history-enabled state’s semantics or by depending on the syntactic structure of history-

enabled sub-parts [38, 64].

The property of compositionality could be achieved by exporting the history information

to the state’s interface. For example, the first state to enter would be part of the

parameterization and gets changed during runtime. However, this would change the

syntactic structure of said state and break any static analysis performed on a conrete

RCM instance (checking model properties like satisfied parameterization).

The approach taken in RCM pursues the latter idea and provides the dynamic oracle

extension, which allows to specify the first state to enter in constant, parameterized or

even in an externally determined manner. This syntactic extension may get translated

into native RCM syntax elements, and is realized by an expression determining the entry

point. The different expressions for the respective dynamic oracle types are:

• Constant : refers to the child state’s name directly or holds the name string itself,

e.g. chi.Child1.name or ’Child1’

• Parameterized : specifies a variable value which holds a name, e.g. stored in a

parameter par.first state

• External : determines the state to enter first in an external service component,

possibly based on the current parameters, results or local variables of the state,

e.g. svc.Oracle.decide(par, res, var)

• History : special expression to use the History strategy, as this requires additional

memoization of the last active child state; denoted by a history keyword

An oracle-enabled state then gets transformed into basic RCM syntax by introduction

of a Dispatcher state, which has ports connected to all entry candidates (other child

states). The different cases are then enumerated in port conditions, which decide based

on aforementioned expression the transition to take. The optional service call in the

external variant would be processed in the dispatcher’s entry and a corresponding ac-

tion handling the response. Using this approach a variety of activation policies can be

implemented. As an example, the common History mechanism is shown with oracle

syntax in Figure 3.9 and the RCM translated model is shown in Figure 3.10.
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exit: svc.robot.stop()

oracle: history

Task

error
svc.robot.collision

Error Handling
done

A

done

B

done

Figure 3.9: Dynamic oracle extension: A history type oracle state
which continues Task execution when transitioning back from Error
Handling. This syntactic extension needs to be translated to RCM
syntax prior to execution.

exit: svc.robot.stop()

actions:
- cond: chi.A.active

func: res.last = ‘A’

- cond: chi.B.active

func: res.last = ‘B’

Task

error
svc.robot.collision

Error Handling
done

Dispatcher

NOT res.last OR

res.last == ‘A’

lastA

lastB

res.last == ‘B’

A

done

B

done

Figure 3.10: Dynamic oracle extension: Resulting RCM syntax after
translating the history type oracle state.
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3.4 Formal semantics

Robotic systems working in close vicinity with human operators, like the ones used with

EMB.RACE, require high standards in regard to human safety while coordination gets

very complex for increasingly sophisticated robotic tasks. These requirements create

a need for advanced methods in analysis and verifcation, providing an opportunity for

formal methods.

Unlike the informal description given in Section 3.2, formal semantics of RCM estab-

lish the foundation for proving language properties like determinism, compositionality,

run-to-completion etc., while also enabling static analysis of RCM instances to check for

violations of these properties. Furthermore, clear formal semantics serve as a reference

for implementation of executives, compilers, parsers etc., while also supporting the lan-

guage design itself. An overall iterative process is established, as new issues come up

when formally specifying semantics after constructing the syntax.

The semantics of RCM are formalized using the structured operational semantics (SOS)

approach of Plotkin [52], because it precisely captures the order of execution steps and

thus gives an intuitive operational understanding while supporting the definition of a

compositional and extendable semantics. Besides these features, the approach readily

supports the translation to model checkers, which can be used to check the initially stated

language properties, and was also used to formalize service interaction in Chapter 4.

Similar to the semantic framework of PLEXIL [21], the execution semantics of RCM is

modularized using six layers of semantic relations:

• Atomic: contains basic evaluation and change of semantic values, condition evalu-

ation, as well as function and action execution

• Activation: defines rules for activating and deactivating certain syntactic elements

• Micro: specifies transitional behavior of states and describes single steps of progress

• Quiescence: defines the run-to-completion of the micro relation

• Macro: describes how the model reacts on external events originating from services

• Execution: is the sequential evaluation of macro steps

As semantic domain, labeled transition systems (LTS) are chosen, to conveniently model

service interaction via labels. For example, the semantics of a hypothetical semantic

class X might be given by the labeled transition system (X , L,→, x), where

• X is the set of system states,
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• L = (E ×A) is the set of labels,

• → ⊆ X × L×X is the transition relation, and

• x is the start state of the transition system.

This means, that each state of the transition system is represented by the current se-

mantic state of a syntactic element x ∈ X . In this exmaple, a label has the form

(ε, α) ∈ (E × A), which can be interpreted in different ways, e.g. as the input and

output of a transition as it was done in [65] with triggers and effects. The interpretation

used in the semantics of this work will get introduced when utilized in Section 4.3. The

transition relation → describes the semantic transition of states x ∈ X and is typically

written x
ε→
α
x′ instead of (x, (ε, α), x′) ∈→. This notation can be read as: term x

performs a semantic transition with input ε and output α to term x′. Note that x′

indicates a change of the model element x, i.e. one of its semantic values gets altered,

but a semantic transition does not necessarily result in a change of x. Finally, every

transition system has to specify a start state, which is defined here as the initial state

of the syntactic element.

The six layers of relations are initially defined using unlabeled transition systems, which

are equivalent to labeled transition systems where the set of labels consists of only one

element, i.e. L = {τ}. As no semantics get assigned to this single element τ , it gets

omitted. Furthermore, all semantic relations get inductively defined using SOS rules

of the form premises
conclusion . Both, premises and conclusions, typically contain contextual

semantic transitions of the corresponding LTS, where these contexts can be thought of

as a parameterization, with which the semantic relation gets evaluated. For example,

C ` x −→ x′, C ′

describes the transition of x, in a context C, to the changed element x′ and context C ′.

These changes sometimes get detailed using brackets, e.g. x′[active = true] indicates

that the semantic value active of x changed to true, or C ′[Φ′] implies a change of Φ.

Consequently, the used SOS rules typically look like

Rule1:

C ` x.cond; true

C ` x; x′[active = true], C ′[Φ′]

C ` x −→ x′, C ′

with the name of the rule on the left, premises above and the conclusion below the line.

This example states that x evaluates in C via the relation −→ to x′, when x.cond eval-

uates in C to true and x evaluates to x′ and C ′ (both via the relation ;).
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Note that the sequence of premises defines the evaluation order in a semantic rule,

whereas rule definition order determines precedence of their applicability. In case of the

premise being a tautology, the rule is called an axiom and the premise is usually left

out.

When SOS rules are applied to derive a semantic transition, a so-called derivation tree

is obtained. The root of the tree is the derived conclusion, the leaves are axioms and

intermediate nodes are instantiated SOS rules. To illustrate this, another example rule

is defined, which depends on Rule1 as a premise:

Rule2:

C ` x.active; false

C ` x −→ x′, C ′

C ` x =⇒ x′, C ′

The derivation tree of applying Rule2 on state x is then:

C ` x.active; false

C ` x.cond; true C ` x; x′[active = true], C ′[Φ′]

C ` x −→ x′, C ′

C ` x =⇒ x′, C ′

3.4.1 Context and Environment

As stated before, the formal semantics of RCM are based on contextual semantic transi-

tions. While contexts for these semantic relations can be chosen arbitrarily (even model

elements), the used contexts are the environment Ω, an abstraction thereof Σ and the

internal model state ∆.

Definition 3.10 (Environment). The environment Ω is defined as the aggregation of

services, with which an RCM instance interacts with. It holds the current state of service

instances and provides appropriate means of communication between these processes.

The latter gets utilized and defined in detail when formalizing service interaction.

Definition 3.11 (External Context). The external context is denoted as Σ and captures

a snapshot of an environment Ω. Thus, it provides the same functionality, but is not

directly influenced by service interaction, as it stays invariant during macro steps on

execution.

Definition 3.12 (Internal Context). The internal context ∆ holds the current state

of the execution model and is used to describe the semantic state of contained model

elements, where it is defined for every node in the model hierarchy.



CHAPTER 3. RACE-CORE MODEL 37

The current state of model elements is described by four aspects contained in ∆:

• parameter values Π

• result values Ξ

• variable values Λ

• activation information Φ

Contexts will be used in several semantic rules, primarily to evaluate conditions or

functions appropriately and to indicate how model elements change their current se-

mantic state. Context changes are indicated by a prime ∆′ and the change may be

detailed in terms of which aspects are affected using ∆′[Φ′] for example to indicate acti-

vation changes. However, most changes are denoted directly on the corresponding state

of the model element to better distinguish on what changed explicitly. For example,

∆ ` s; s′[active = true],∆′ states, that RCM state s gets activated in context ∆, and

in turn results in the changed context ∆′. Hence, state s is active in context ∆′, which

may get evaluated by the atomic relation with ∆′ ` s.active; true.

Some semantic rules have multiple premises evaluating in a context and besides their

denotation order, the context in which they evaluate also specifies the sequence of eval-

uation. In such cases a premise evaluating in contexts Σ and ∆ may result in context

∆′, where a second premise then specifies its dependency on context ∆′ instead of ∆.

If semantic rules are defined with multiple contextual semantic transitions, the appro-

priate contexts (e.g. ∆c,∀c ∈ s.children) sometimes have to get derived from another

context, which is denoted by ∆ ⇁ ∆c, and resulting contexts can propagate back via

∆′c ⇀ ∆′.

Corresponding to the intended scope semantics presented in Section 3.2.1, the context

∆ is scoped for each syntactic element. This scoping strictly limits the influence of

model elements to lower levels. Typically, only the interface of own children and ports

is queried, as well as only direct sub-level contexts may get derived from ∆ via ⇁, to

benefit compositionality of the semantics.

3.4.2 Atomic layer

The first and most basic semantic layer defines elementary rules for evaluating and

changing semantic values of model elements. Besides specifying when, how and with

what effects these values change, the atomic layer also consists of rules for condition,

function and action evaluation (execution). All other semantic layers build upon the

rules of this layer.
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Semantic values of RCM elements

These rules define the atomic change or evaluation of the current value of semantic

properties like active, activated and parameter values. States, barriers and ports all

define the active property for describing their current state of activation, where three

rules specify activation, deactivation and evaluation of this active value x ∈ (S ∪B∪P):

Active:
∆ ` x.active; {true, false}

(3.8)

Act:
∆ ` x.active; false

∆ ` x; x′[active = true],∆′[Φ′]
(3.9)

Deact:
∆ ` x.active; true

∆ ` x; x′[active = false],∆′[Φ′]
(3.10)

In addition to being active themselves, barriers also keep track of activations of connected

inbound ports via the property activated, which is defined by the following two rules

with b ∈ B and p ∈ P, where
∪
= is defined as the union assignment operator, i.e.

A = A ∪B ⇐⇒ A
∪
= B.

BIn:
p ∈ b.in

∆, p ` b; b′[activated
∪
= p],∆′[Φ′]

(3.11)

The activated status of a given port p ∈ P in a certain barrier b ∈ B is determined by:

Activated:
∆, p ` b.activated(p) ; {true, false}

(3.12)

Parameters, results and local variables, each possess a current semantic value, but as

the values themselves are captured by the context ∆, no rules need to be defined for

changing and reading these values. However, the expression of parameters pa ∈ PA has

to be resolvable to a value c ∈ C when entering a state.

Resolve:
∆ ` pa.expr ; c ∈ C (3.13)

Function language evaluation

RCM conditions, functions and actions are defined using the distinct function language.

The formalization of execution semantics however does not require a detailed descrip-

tion of individual function statements and thus gets abstracted to function evaluation

as a whole in rule definitions. This approach is common when formalizing coordination
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languages (e.g. Stateflow [32]) and simplifies semantics of elements like functions. How-

ever, in order to formalize service interaction, it is necessary to describe the behavior of

individual function statements in greater detail. For this purpose, the following semantic

rules get refined in Section 4.4.

Conditions

Boolean conditions bc ∈ BC get evaluated on contexts Σ and ∆ to a boolean value, and

access these contexts using function language expressions as described in Section 3.2.2.

Cond:
Σ,∆ ` bc; b ∈ {true, false}

(3.14)

Functions

Similar to conditions, functions f ∈ F access contexts Σ and ∆ on evaluation, but may

additionally change current result values Ξ and local variables Λ of the given internal

context ∆.

Func:
Σ,∆ ` f ; f,∆′[Ξ′,Λ′]

(3.15)

Actions

As actions a ∈ A are conditioned functions, the semantics are based on condition and

function evaluation, where the function is only executed if the condition evaluates to

true. Moreover, any action may only execute its function once every macro step, which

is achieved by setting the executed flag in context Σ.

Action1:

Σ ` executed(Σ, a) ; false

Σ,∆ ` a.cond; true

Σ,∆ ` a.func; a.func,∆′[Ξ′,Λ′]

Σ,∆ ` a; a,∆′,Σ′[executed
∪
= a]

(3.16)

For the sake of breviety, the detailed effects of semantic transitions are sometimes left

out, as it is the case for the changed context ∆′ in this rule. Also, as these three rules are

the only ones considering executed, the change in external context Σ can be neglected in

other rules.

Action2:
Σ ` executed(Σ, a) ; true

Σ ` a; a
(3.17)

Action3:
Σ,∆ ` a.cond; false

Σ,∆ ` a; a
(3.18)
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3.4.3 Activation layer

This layer provides auxiliary activation −→↑ and deactivation −→↓ relations to model

activation and deactivation processes of certain model elements respectively. The rules

in this layer are parameterized with the evaluation relation ; of the atomic layer. Mod-

eling this layer of abstraction is convenient because upper layers can focus on defining

transition semantics, while effects of activation and deactivation are captured by rela-

tions of this semantic layer.

Deactivation of states and barriers

First, deactivation of an already inactive state s ∈ S is modeled by sequentially deac-

tivating all ports as indicated by the notation used in the second premise of this rule.

Here, every port has to deactivate one after another, denoted by context indices on

which the premise is evaluated. The initial context ∆0 is derived by the given context

∆, where the ⇀ ∆′ notation is used instead of explicitly stating ∆n ⇀ ∆′ as a fourth

premise line.

SDeact1:

∆ ` s.active; false

∀pi ∈ s.ports : i = 1...n, ∆ ⇁ ∆0

∆i−1 ` pi ; pi,∆
i ⇀ ∆′

Σ,∆ ` s −→↓ s,∆′
(3.19)

The second rule describes deactivation of a previously active state s ∈ S, where first,

deactivation is propagated to all children c ∈ s.children, before the state’s exit function

is executed and it gets deactivated. Propagating deactivation is done synchronously by

deriving the appropriate contexts ∆ci from the current context ∆ and evaluating the

premise relation independently for all children. In the style of previous notation, this

could be written:

∀ci ∈ s.children : i = 1...n, ∆ ⇁ (∆c1 ...∆cn)

Σ,∆c1 ` c1 −→↓ c′1,∆′c1
...

Σ,∆cn ` cn −→↓ c′n,∆′cn

⇀ ∆′

This clearly shows that each premise is evaluated in independent contexts ∆ci and result

in an altered contexts ∆′ci , which cumulatively propagate ‘up’ to a changed context ∆′.

However, the notation gets slightly simplified in the following rule, exploiting evaluation

independence, but still illustrating applicability to all children and the cumulative result

in context ∆′. In summary, it describes state deactivation and preemption of potential

child states.
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SDeact2:

∆ ` s.active; true

∀c ∈ s.children : ∆ ⇁ ∆c

Σ,∆c ` c −→↓ c′,∆′c ⇀ ∆′

Σ,∆′ ` s.exit; s.exit,∆′′

Σ,∆′′ ` s; s′[active = false],∆′′′

Σ,∆ ` s −→↓ s′,∆′′′
(3.20)

A barrier b ∈ B, on the other hand, gets deactivated by simply clearing its activation

information as described by the rule:

BDeact:

∆ ` b; b′[active = false],∆′

∆′ ` b′ ; b′′[activated = ∅],∆′′

∆ ` b −→↓ b′′,∆′′
(3.21)

Activation of states and barriers

Both, states and barriers, can be referred to as the first element of a composite state

or as the dst of a port. These are the only cases when the execution semantics result in

an activation of a state or barrier. Hence, all activation rules are provided with a port

p as context to distinguish these cases and optionally keep track of port activations.

State activation is modeled by setting the state active, executing the state’s entry

function and finally propagating activation to the first child. Note that the ∀ quantifier

is used to optionally apply the last premise, while the first-relation has cardinality 0..1.

SAct1:

∆ ` s.active; false

∆ ` s; s′[active = true],∆′

Σ,∆′ ` s.entry ; s.entry,∆′′

∀f ∈ s.first : ∆′′ ⇁ ∆f

Σ,∆f , ∅ ` f −→↑ f ′,∆′f ⇀ ∆′′′

Σ,∆, p ` s −→↑ s′,∆′′′
(3.22)

Even though the port context does not affect any of the premises for activating a state,

the empty set has to be passed as port context when propagating, because barrier seman-

tics have to determine that the element gets activated as the first child in a composition.

Additionally, a rule is defined for already active states, where the semantic transition

can be applied without further evaluation and context ∆ stays unchanged.

SAct2:
∆ ` s.active; true

Σ,∆, p ` s −→↑ s
(3.23)
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Barrier activation (as first) In this first case, a barrier is the first child of a composite

state on activation. This is the only scenario where a ∅ port context is supplied, which is

checked by the second premise, and results in a direct activation of the barrier element.

BAct1:

∆ ` b.active; false

p = ∅
∆ ` b; b′[active = true],∆′

Σ,∆, p ` b −→↑ b′,∆′
(3.24)

Barrier activation (by port). The second rule models the case, where a barrier gets

activated by a port-issued transition and the corresponding port is supplied as context p.

Using this context, barrier semantics register the port as activated. Once all ports were

triggered the barrier element changes its semantic state to active. The third premise

utilizes the ∀ quantifier to denote required applicability to all connected ports.

BAct2:

∆ ` b.active; false

∆ ` b; b′[activated
∪
= p],∆′

∀pi ∈ b.in :

∆′ ` b.activated(pi) ; true

∆′ ` b; b′[active = true],∆′′

Σ,∆, p ` b −→↑ b′,∆′′
(3.25)

The last case, where not all ports got activated yet, is described by the following rule.

The third premise has to hold for at least one in-port as indicated by the ∃ quantifier

and the barrier remains inactive.

BAct3:

∆ ` b.active; false

∆ ` b; b′[activated
∪
= p],∆′

∃pi ∈ b.in :

∆′ ` b.activated(pi) ; false

Σ,∆, p ` b −→↑ b′,∆′
(3.26)

3.4.4 Micro Layer

Utilizing the activation layer, the micro layer semantics define the individual steps,

which drive the execution. There are two kinds of these so-called micro steps: First,

semantic transitions describing a model’s progress, typically representing syntactic tran-

sitions, e.g. from active ports to destination states. The second type are stuttering

transitions, which do not change currently active model elements, but may result in
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changes of semantic values, e.g. execution of state actions reacting on an event. All

micro layer rules are formulated in terms of RCM states and inductively define the −→-

relation in a corresponding LTS. Finally, another relation =⇒ is introduced to describe

progression/stuttering of the whole model in its current semantic state ∆.

Progress

Preemption. Model progress always originates from port activations. Rule PTrigger is

the first and thus highest prioritized micro layer rule. It describes the situation, where a

port condition evaluates to true and deactivates the corresponding source state s ∈ S,

including preemption of potentially active child states as defined by rule SDeact2.

PTrigger:

∆ ` s.active; true

∃p ∈ s.ports :

Σ,∆ ` p.cond; true

Σ,∆ ` s −→↓ s′,∆′

∆′ ` p; p′[active = true],∆′′

Σ,∆ ` s −→ s′,∆′′
(3.27)

As the evaluation order of ports is not explicitly defined, this may lead to an unintentional

prioritization of certain ports when multiple conditions evaluate to true in the same

micro step. Although being deterministic by selecting the first (i.e. with lowest index)

port, whose condition is fulfilled, these semantics are not explicit for the task designer.

In general, these order-dependant semantics (also in other rules) may get improved in

future versions by introducing some sort of priority syntax. In the case of ‘conflicting’

port conditions, the best-practice of designing mutually exclusive port conditions resolves

this ambiguity as well.

Port transition. Once a port is active, a syntactic transition to its destination state

is taken, as described by the next rule - PTrans1. It defines the individual semantic

transitions comprising a port-issued syntactic transition. Let the function active ports :

(∆ × S) → (P × N ) list all currently (in context ∆) active child ports p ∈ P of state

s ∈ S, with their destination d ∈ N , i.e. all ports which are ready for transitioning.

In order to activate a syntactically defined destination d, all its parameters have to be

resolved in the activating context ∆, leading to updated parameter values of d, stored

in context ∆′d. Next, with this updated values and the transitioning port p as context,

the destination state or barrier gets activated, followed by deactivation of the port p.
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PTrans1:

∆ ` s.active; true

∀ai ∈ s.actions : i = 1...n, ∆ ⇁ ∆0

Σ,∆i−1 ` ai ; ai,∆
i ⇀ ∆′

∀(p, d) ∈ active ports(∆′, s) 6= ∅ : ∆′ ⇁ (∆p,∆d)

∀pa ∈ d.parameters :

∆ ` pa.expr ; c ∈ C,∆′d[Π′]
Σ,∆′d, p ` d −→↑ d′,∆′′d
∆p ` p; p′[active = false],∆′p


⇀ ∆′′

Σ,∆ ` s −→ s,∆′′
(3.28)

Again, each transition from ports p to destinations d gets evaluated independently,

while the final context ∆′′ is the cumulative result of all changed contexts ∆′p and ∆′′d.

Intuitively, this results in an observed (by upper layers) simultaneous transition of all

active ports to their corresponding destinations. Furthermore, the rule is only applicable

if there are any pending port-issued transitions, as indicated by active ports(∆′, s) 6= ∅.

At first glance, there exists an issue with the independent transitioning semantics of

PTrans1. When two ports with the same destination are active simultaneously, the

destination contexts ∆d are obviously not independent. In this special case, it is of

importance, which of the ‘conflicting’ transitions is evaluated first, in order to determine

the derivation sequence when applying rule PTrans1. Although this precedence selection

is prone to the same issue pointed out for conflicting port conditions, the derivation trees

are equivalent for this case, as the state does not get entered anymore when already active

(see Section 5.2).

Barrier transition. Similarly to the transition semantics of activated ports, a deacti-

vating barrier results also in transitions to all of its syntactically connected states. Let

the function active barriers : (∆ × S) → B list all currently active barriers b ∈ B of a

state s ∈ S. Here, every active barrier results in the synchronous and thus independent

activation of all its destinations. This is indicated by the specific destination contexts

∆d, in which the destination states get activated after resolving eventual parameters (as

in Rule PTrans1). Once all outbound states are activated the deactivation of the barrier

element results in contexts ∆′b. Finally, the semantic transition of all active barriers

is captured in the final context ∆′′ of state s, which also contains contexts of all, now

active, destination states ∆′′d. Informally, the behavior of rule PTrans2 is, that all ac-

tive child barriers transition to all their respective destination states at the same time.

The premises of this rule are only fulfilled when at least one child barrier is active, i.e.

active barriers(∆, s) 6= ∅.
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PTrans2:

∆ ` s.active; true

∀ai ∈ s.actions : i = 1...n, ∆ ⇁ ∆0

Σ,∆i−1 ` ai ; ai,∆
i ⇀ ∆′

∀b ∈ active barriers(∆′, s) 6= ∅ : ∆′ ⇁ ∆b

∀d ∈ b.out : ∆′ ⇁ ∆d

∀pa ∈ d.parameters :

∆′ ` pa.expr ; c ∈ C,∆′d[Π′]
Σ,∆′d, ∅ ` d −→↑ d′,∆′′d

∆b ` b; b′[active = false],∆′b


⇀ ∆′′

Σ,∆ ` s −→ s,∆′′
(3.29)

Stuttering

When a state s ∈ S is not subject to any progress (e.g. getting deactivated by a port,

or a transition of its children), it may perform a semantic transition called stuttering. In

this case, the state only evaluates its actions and propagates evaluation to active child

states. Actions are evaluated sequentially, where propagation to child states is done

synchronously (and independently) as described by the two different notations in the

following rule.

SProp:

∆ ` s.active; true

∀ai ∈ s.actions : i = 1...n, ∆ ⇁ ∆0

Σ,∆i−1 ` ai ; ai,∆
i ⇀ ∆′

∀c ∈ active states(∆′, s) : ∆′ ⇁ ∆c

Σ,∆c ` c −→ c′,∆′c ⇀ ∆′′

Σ,∆ ` s −→ s,∆′′
(3.30)

The propagation premise relation c −→ c′ is satisfied by all micro layer rules, as the

transition includes also rules with conclusion c −→ c. Obviously in case of s.actions = ∅
and s.children = ∅ the resulting context ∆′′ equals ∆. Summarizing, the application of

rule SProp, recursively enables progress (preemption, transitions) or stuttering (includ-

ing action evaluation) on all active children in the state-hierarchy, and eventually breaks

down to a sequence of atomic layer rules.

If the root state sroot ∈ S at the top-level of this state-hierarchy progresses (i.e. transi-

tions to s′root), it will deactivate, preempt all active states and represent the end of the

model execution. However, all micro steps get initiated by propagation (via rule SProp)

of the root state. The rule capturing both these cases concludes in a semantic transition

of the whole internal model state:

Micro:
Σ,∆ ` sroot −→ s′root,∆

′

Σ ` ∆ =⇒ ∆′
(3.31)
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3.4.5 Quiescence

The repetetive application of micro steps, until the model state does not change anymore,

reaching a complete state, is called quiescence. It is described by the relation =⇒↓ and

defined using the transitive reflexive closure of the micro relation =⇒∗:

Quiesc:

Σ ` ∆ =⇒∗ ∆′

∆′ is =⇒ -normal-form

Σ ` ∆ =⇒↓ ∆′
(3.32)

The semantics provided by this relation are also called run-to-completion, which hints

on the complete state of the model reached after transitioning. A model state ∆′ is

called complete or in =⇒-normal-form [6], if it cannot be reduced any further by =⇒-

transitions. This means, that there is no ∆′′ such that ∆′ =⇒ ∆′′.

3.4.6 Macro layer

In a given context Σ, the model ∆ advances in a finite number of steps to a non-reducable

state in micro steps, which is described by the quiescence relation. But in order to react

on external stimuli from services, the context has to get updated with updated values

from environment Ω. This incorporation of external information accompanied with the

model reacting on this updated input is called a macro step and defined by the macro

relation:

Macro:

Σ′ =

{
Ω if updated(Ω,Σ)

Σ else

Σ′ ` ∆ =⇒↓ ∆′

Ω ` (Σ,∆) ∗−→ (Σ′,∆′)
(3.33)

So far, the effects of interactions with services in the environment Ω while evaluating

functions are not modeled, and thus, the updated function in the if-condition defin-

ing Σ′, is modeled as the difference of Ω and Σ between two consecutive macro steps:

updated(Ω,Σ) := Ω 6= Σ.
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3.4.7 Execution

Using the macro relation, the entire execution can then be modeled as the application of

macro steps. While neglected in lower layers, the changed environment Ω′ is denoted here

again to hint on possible interaction with the environment when evaluating functions on

the atomic layer:

Exec:
Ω ` (Σ,∆) ∗−→ (Σ′,∆′),Ω′

(Ω,Σ,∆) 7→ (Ω′,Σ′,∆′)
(3.34)

In summary, the Exec rule describes an execution step of the RCM, assuming a changed

environment Ω′ without detailing these changes and how they would in turn affect the

next macro step. This assumption can be overcome by modeling the interactions between

evaluating model elements and the environment, as it is done in Chapter 4. Moreover,

formalization of service interaction not only refines the formal semantics of RCM, but

also enables formal analysis of tasks involving service operations.
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Chapter 4

RACE-Service Model

In EMB.RACE, computational capabilities are modularized into RACE-Services, where

the RACE-Service Model (RSM) serves two purposes: First, it describes an abstract

syntactic interface for these services to uniformly interact with the various system ca-

pabilities from the RACE-Core. Secondly, it contributes to formalization of interaction

between programs running in the RACE-Core (modeled by the RCM in Chapter 3) and

respective service processes in the EMB.RACE ecosystem.

When researching component-based or service-oriented robotics, two different views can

be identified. A taxonomic view is taken by analyzing typical application scenarios or

similarly solved (robotic) problems, leading to a classification of services into a taxonomy.

This advocates exchangability of components by solving the same problem, e.g. motion

planning or object recognition. However, research is still in early stages on robotic ser-

vice taxonomies [47], and only a small number of architectures approach modularization

in this way (e.g. CLARAty [63]). The second and more popular approach, is to deter-

mine a component’s compatibility by its generic interface, which often already describes

component functionality. All stated component frameworks in Section 2.4 describe some

sort of interface, which determines how modules can be interconnected.

The formalism presented in this chapter pursues a generic approach when modeling the

syntactic interface of services after identifying primitive service modalities by analyz-

ing typical robotic problems and their algorithmic solutions (taxonomic). On top of

typical service-oriented features like re-usability, modularization and distributed opera-

tion of programs, RSM additionally enables checked service coordination, assistance in

orchestration or monitoring of execution by formalizing service interaction.

First, different kinds of service modalities are identified (Section 4.1), before introducing

RSM syntax (Section 4.2), formal semantics (Section 4.3) and ultimately revisiting RCM

syntax and semantics (Section 4.4) to additionally model service interaction.
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4.1 Service modalities

In the EMB.RACE system, RACE-Services represent the various system capabilities

and provide a defined syntactic interface to coordinating entities like the RACE-Core,

but also to other services. In order to specify requirements of this service interface, the

employed communication modalities of typical robotic services have to be identified.

For this purpose, a variety of well-known robotic problems were analyzed in their required

and provided data, parameterization and how they are utilized, i.e. sequential interaction

with a particular service implementing a certain algorithm. Some of the considered

scenarios are world modelling, motion planning, object recognition and visual servoing,

graphical and haptic user-interfaces, grasping and robot control. After investigating

these cases, two service communication primitives in three different modalities could be

identified:

Data-flow. A service publishes or subscribes to data provided by another component.

The transmitted data conforms to a specified data type and gets advertised with a

certain frequency or even irregularly. As robotics is a very data-intensive domain, this

type of communication is very common, e.g. processing pipelines of vision components.

This modality is particularly interesting when feedback loops are present in the robotic

system.

Service Service

source sink

sink source

Request-response. This communication method corresponds to the classical client-

server paradigm, where a service provides some functionality which can be invoked by

other entities. The trivial case of such a service is the stateless variant, providing indem-

potent functionality which is always available and thus requests are handled immediately

or at least independently.

request / response Service

In contrast to this, a stateful service provides state dependant functionality, possibly af-

fecting service state on invocation. Most services in the robotic domain are long-running

or resource-bound in one way or the other (computational time, physical movement or

interaction, awaiting input, etc.) and are represeneted by this service modality.
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State1 State2

Service

req1

req2

request / response

state

In summary, the used communication primitives are well-known [41] and contained in

most robotic software architectures and middlewares encountered so far. However, state-

ful components are seldomly distinguished and usually get reduced to their specified

interface of data ports and procedures without any knowledge of the internal state [55].

The closest equivalent to modeling of stateful services are component life-cycles as they

are defined in some frameworks (e.g. Orocos or SmartSOFT). These life-cycles typically

specify whether a component is idle, active or in an error state.

4.2 RSM Syntax

This section introduces syntactic classes of RSM with the same notation as for RCM in

Section 3.1. The primitive communication methods identified in Section 4.1 of publish-

subscribe and client-server are used to specify the syntactic structure of a RACE-Service

in RSM. The two different kinds of interaction paradigms are named events and opera-

tions respectively, to differentiate from middleware-specific nomenclature.

In general, RSM describes service states as finite state machines (FSM), using operation

calls as transition events and extends these with notations to model deferred and pending

responses (as explained later). A service svc ∈ SVC models stateful interaction by

defining a generic service interface of events and operations, along with several internal

states as follows.

Definition 4.1 (Service).

SVC = (IDsvc ×OP∗ × EV∗ × T ∗ × SS × SS) (4.1)

The unique identifier of the service is given by name(svc) ∈ IDsvc, where operations(svc) ∈
OP∗ and events(svc) ∈ EV∗ define the provided service interface. Transitions trans(svc) ∈
T ∗ describe possible changes of service states, while init(svc) ∈ SS specifies the initial

and cur(svc) ∈ SS the currently active service state. For convenience, op(svc, v) ∈ OP0

and ev(svc, v) ∈ EV0 are defined to query operations and events by name.
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Definition 4.2 (ServiceState).

SS = (V × EV∗) (4.2)

A service state ss ∈ SS has a locally unique name(ss) ∈ V along with events(ss) ∈ EV∗

getting emitted in this state. The most practical granularity of specifying emitted events

is still to be found as a more detailed specification similar to functions and actions of

RCM states (Definition 3.1) would be possible as well.

Definition 4.3 (Transition).

T = (SS0 × SS ×OP0 × EV∗ × T ∗) (4.3)

Transitions t ∈ T define an optional source state src(t) ∈ SS0, a required destination

dst(t) ∈ SS, the triggering operation(t) ∈ OP0 as well as emitted events(t) ∈ EV∗ when

transitioning. At last, syntactically defined relations defer(t) ∈ T ∗ are used to describe

deferral of the transition’s operation response to a set of other transitions.

Deferring an operation response basically means that the incoming operation call, which

issues a state transition, is not answered directly, but will be resolved when some other

transition is taken. This is consequently modeled by the auxiliary function resolve,

which selects all deferred transitions getting resolved on transitioning of t:

resolve(t) =


x | ∀x ∈ T if t.src = ∅,
x | ∀x ∈ T : t ∈ x.defer if t.defer 6= ∅,
t ∪ x | ∀x ∈ T : t ∈ x.defer else

Informally, the relation is defined by the following three cases: First, transitions without

a source consider all transitions for resolving. In the second and third case, all transitions

x deferring on t are included, where transition t is only contained when it does not defer

resolution itself (third case).

Furthermore, the semantic value pending(t) ∈ {true, false} describes whether the oper-

ation response of some transition t is still pending, and the function respond determines

pending operations of corresponding transitions (to resolve):

respond(t) = {x.operation | ∀x ∈ t.resolve : x.pending = true}

In conclusion, transitions with an empty src state model an always possible transition

to the given destination state, while a transition with empty operation do not require

interaction to be taken. The intention of RSM is best described by an example, as

shown in Figure 4.1. The simplified Robot Service provides three operations, namely
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stop, move and change behavior. The initial service state is Idle, where a call of

operation move would result in a transition to Moving. The dashed connection of this

transition to the one leading back into Idle is the graphical notation for a deferral of the

move operation. Transitions for operation change behavior do not issue a state change,

while operation stop will always issue a transition to state Idle (and would respond any

deferred transitions as stated earlier).

Idle Moving

stop move
change behavior

change behavior

Robot Service

Figure 4.1: Simplified robot service providing operations stop, move
and change behavior, where Idle is the start state and the transition
from Idle to Moving is deferred.

4.3 Formal semantics

As the syntactic structure of RSM is basically a FSM, the semantics correspond to finite

state transducers. The intended behavior is that an RSM instance reacts on operation

requests, possibly issuing state changes, and describes provided operation responses as

well as published events of a service. By explicitly modeling available operations in each

service state, the RSM semantics allow to decide if an issued sequence of operations can

be executed (accepted) given a specific service model. On the other hand, the semantics

also specify whether operation responses or event data is provided by a service in its

current state, and permit statements about possible deadlocks or reachability of states.

4.3.1 Semantic domain and communication

The formal semantics of services are, similar as RCM in Section 4.3, defined by structured

operational semantics (SOS) with labeled transitions systems (LTS) as semantic domain.

The latter is defined as the four-tuple (SVC, L, ↪→, svc), where

• SVC are states of the transition system,



54 4.3. FORMAL SEMANTICS

• L = Com(OP)0 the labels,

• ↪→ ⊆ SVC × L× SVC is the semantic relation, and

• svc the initial semantic state.

As services are modeled to react on incoming operation calls, the formalism has to pro-

vide appropriate means of communication. Therefore, the labels of the service LTS use

channel systems to synchronously receive operation calls from RCM [7, p. 53]. Chan-

nels provide both, synchronous and asynchronous communication via first-in/first-out

buffers and are denoted by two actions defined in the set Com = {c!x, c?x}. Sending

is realized with c!x, which transmits a value x via the channel c ∈ Chan, while c?x

consequently receives a value from the channel. A channel with capacity size(c) = 0

represents synchronous communication, which is also called handshaking or rendezvous.

Labels of the service LTS are then communicated operations of the form ω?α, where

ω ∈ Chan and α ∈ OP denote channel and operation respectively. In the RCM/RSM

formalism, dedicated synchronous channels are obtained from the environment Ω via the

function channel(Ω, svc) ∈ Chan. Semantic transitions are written as svc
ω?α
↪→ svc′ to

represent an incoming operation call, on which the service should react, or svc ↪→ svc

when no interaction occurs.

Once an operation request gets resolved by the service semantics, the corresponding

response (either a result or error) or eventually published events will be available in the

environment Ω. Mechanisms for providing and retrieving this information are realized

by the two functions get(Ω, ε) = c ∈ C0 and put(Ω, ε) = Ω′, where ε ∈ (OP ∪ EV)∗

are requested operations or events. While the get function either returns the requested

value or the empty set ∅ if unavailable, the put function produces a changed environment

Ω′, which contains the given operation response or event data ε. If ε contains multiple

requirements, only available values are returned when queried via get. For example, let

ε = (’data’, true) ∈ EV

then an environment Ω can be accessed and changed by get and put as follows:

get(Ω, ε) = ∅
put(Ω, ε) = Ω′

get(Ω′, ε) = (’data’, true)
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4.3.2 Semantic rules

Transitioning. In order to describe the transitioning of services, two different situations

are distinguished. First, the service may perform a semantic transition (to a possibly

different service state) when an operation request is received from the environment:

Trans1:

∃t ∈ svc.trans :

t.src = svc.cur ∪ ∅
α = t.operation ω = channel(Ω, svc)

ε = t.respond ∪ t.events

put(Ω, ε) = Ω′[ε]

Ω ` svc ω?α↪→ svc′[cur = t.dst],Ω′[ε]
(4.4)

This rule considers both, transitions with and without a source state. The premises

require a transition to originate from the current service state svc.cur (if applicable)

and compare the transition trigger t.operation with the retrieved operation request α via

channel ω. If the premises are fulfilled, the semantic transition concludes in a possibly

different service state as stated by svc′[cur = t.dst], and a changed environment Ω′

holding the appropriate operation responses and emitted events as listed in ε.

Trans2:

∃t ∈ svc.trans :

t.src = svc.cur ∪ ∅
t.operation = ∅
ε = t.respond ∪ t.events

put(Ω, ε) = Ω′[ε]

Ω ` svc ↪→ svc′[cur = t.dst],Ω′[ε]
(4.5)

Rule Trans2 models the second case where transitions, which do not specify an operation

trigger t.operation, may be taken similarly even when no interaction occurs. These types

of transitions typically describe a finished computation which was originally issued by an

operation call and got deferred (e.g. the transition from Moving to Idle of the example

shown in Figure 4.1).

Stuttering. When no operation request are received by Ω, the service may not change

its current service state, where only specified events of the current state get emitted into

the environment (can be ∅).

Stutter:

ε = svc.cur.events

put(Ω, ε) = Ω′[ε]

Ω ` svc ↪→ svc,Ω′[ε]
(4.6)
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4.4 Service interaction in RCM

So far, the effects of interaction with services are modeled in the RSM formal semantics.

In order to fully describe communication between coordinating (RCM) and computing

(RSM) processes, the semantics of the former have to get extended with corresponding

mechanisms as well. For this purpose, the syntactic structure of functions and conditions

has to get refined, as the chosen abstraction (presented in Section 3.4) is too coarse to

describe interaction semantics. Figure 4.2 gives an outline to the modeled interaction

semantics, by highlighting three key aspects: First, calling an operation on function

evaluation (atomic layer) directly influences services in the environment Ωsvc ⊆ Ω, pos-

sibly resulting in service state transitions. Conditions and functions depend on operation

results or event data in the current external context Σ (invariant during a macro step).

And as a third point, the external context gets updated with values from services in the

environment Ω on every macro step.

State

Port

Function

Condition

Service

Operation

Event

∆ Σ

RACE-Core

ServiceState

ServiceState

op1

op2

Ωsvc

RACE-Services

update

call

depend

depend

Figure 4.2: Schematic visualization of the service interaction formalization, where a
function and condition in a RACE-Core instance interact with RACE-Services. The
evaluation of a function with service interaction yields direct changes to Ω, while de-
pendencies have to be met by external context Σ, which gets updated from Ω on every
macro step.

4.4.1 Revisited RCM syntax

Boolean conditions are refined to distinguish between regular boolean expressions and

service dependant portions of the condition. Parts of both kinds are later semantically

combined by boolean operators, while the compound boolean condition is defined as:

Definition 4.4 (Boolean Condition).

BC = (BE ∪ BD)∗ (4.7)
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BE are boolean expressions written in function language without effects on the model

and may read available parameters, results or variable values of a given internal context.

BD = (IDsvc × V∗ × V∗) are boolean expressions depending on service event and op-

eration result data. svc(sd) ∈ IDsvc specifies which service, while ev(sd) ∈ V∗ and

op(sd) ∈ V∗ describe which events/operations are required to evaluate. Note that only

event and operation names are defined by these realations, which will get resolved to

respective instances. Also, expressions of this type may not have any effect on the model

on evaluation.

Functions f ∈ F get redefined similarly as a compound of individual statements:

Definition 4.5 (Function).

F = (ST ∪ SD ∪ SC)∗ (4.8)

ST are statements written in a function language (like calculations, variable assignments,

prints/logs etc.), with the constraint, that long-blocking statements are not allowed (e.g.

sleep, I/O, synchronous communication etc.), but may use and change values of the cur-

rent semantical context.

SD = (IDsvc ×V∗ ×V∗) are statements (e.g. assignment to a local variable) depending

on service event or operation result data. Again, svc(sd) ∈ IDsvc holds the service

identifier, while ev(sd) ∈ V∗ and op(sd) ∈ V∗ define the event and operation names of

this dependency.

SC = (IDsvc × V) are statements interacting with a service by invoking an operation,

where svc(sc) = IDsvc specifies the service, and op(sc) = V holds the name of the

operation to call.

4.4.2 Revisited RCM semantics

Due to the syntactic refinement, the semantics of RCM consequently need to get adapted

on the atomic, macro and execution layers. Besides of the redefined syntactic structure

of functions and conditions requiring appropriate semantics, the macro and execution

relations get detailed to additionally reflect service interaction.
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Atomic layer

The semantics for the service dependant syntax elements BD and SD are described by

LTS of the form (BD, L,;, bd), where the set of labels L = (OP ∪ EV)∗ is defined as

sequences of operations or events and gets interpreted as service requirements. Inten-

tionally, statements and expressions depending on certain events or operations, require

corresponding values to be available on evaluation.

Service call statements SC, on the other hand, are defined by an LTS with labels L =

Com(OP). Even though Com also includes the receiving communication action c?x,

operation call semantics are only denoted with sending labels c!v, where the term ω!α is

used to describe an invocation of operation α ∈ OP via channel ω ∈ Chan.

Service lookup. All service relevant elements hold identifiers id ∈ IDsvc of services

instances, which have to be resolved first in an external RCM context Σ. Note that an

unvailable service will result in svc = ∅.

Lookup:
Σ ` id; svc ∈ SVC0

(4.9)

Boolean expressions. Service dependant boolean expressions bd ∈ BD evaluate into

a boolean value, but require certain event or operation result/error data in order to do

so. The premise get(Σ, ε) 6= ∅ denotes this and holds when all requirements ε are present

in the context Σ. This check is called semantic availability of these values, while the

preceding premises test syntactic availablity of required events and operations. In case

of BD-elements, the requirements are stored in bd.ev and bd.op.

CondBD:

Σ ` bd.svc; svc 6= ∅
∀ev ∈ bd.ev : svc.ev(ev) 6= ∅
∀op ∈ bd.op : svc.op(op) 6= ∅
ε = (bd.ev ∪ bd.op), get(Σ, ε) 6= ∅

Σ ` bd ε
; b ∈ {true, false}

(4.10)

In contrast, boolean expressions which only use values of the internal context (e.g. pa-

rameters or results) evaluate without any side-effects or requirements to a boolean value:

CondBE:
Σ ` be; b ∈ {true, false}

(4.11)
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Boolean conditions. The semantics for a boolean condition bc ∈ BC consisting of

single boolean expressions bci ∈ (BE ∪ BD) then accumulates requirements εi of its

service dependant expressions as described by the following rule:

Cond:

∀bci ∈ bc : i = 1...n,

Σ,∆ ` bci
εi
; bi ∈ {true, false}

Σ,∆ ` bc ε
; bool(bc, b1, ..., bn) ∈ {true, false}

(4.12)

Here, ε =
n⋃
i=1

εi is the combination (union) of event/operation dependencies and bool :

BC × I∗ → I combines the results of bci using the boolean operators specified in the

syntax of the boolean condition.

Service dependant statements. Similar to their condition counterpart, statements

sd ∈ SD describe the dependency of a function statement on current semantic values of

service events or operations, i.e. their semantic availablity. The only difference is, that

these statements may additionally change the context ∆ in its result Ξ or variable Λ

values.

FuncSD:

Σ ` sd.svc; svc 6= ∅
∀ev ∈ sd.ev : svc.ev(ev) 6= ∅
∀op ∈ sd.op : svc.op(op) 6= ∅
ε = (sd.ev ∪ sd.op), get(Σ, ε) 6= ∅

Σ,∆ ` sd ε
; sd,∆′[Ξ′,Λ′]

(4.13)

Service operation call statements. These special statements sc ∈ SC express inter-

action with a syntacticly defined operation sc.op of some service sc.svc. After resolving

the service identifier and checking syntactic availability of the requested operation, the

statement evaluates by synchronously invoking the operation α with the current envi-

ronment Ω, via the appropriate channel ω of the requested service.

FuncSC:

Σ ` sc.svc; svc 6= ∅
α = svc.op(sc.op) 6= ∅
ω = channel(Ω, svc)

Ω,Σ ` sc ;
ω!α

sc
(4.14)

The operation call itself does not change the environment directly, but will eventually

result in a response from the service, which then changes Ω and results in available data

in Σ of the following macro step.



60 4.4. SERVICE INTERACTION IN RCM

The trivial case of function statements st ∈ ST , which do not depend on service data

or inflict operation calls, is described by the rule:

FuncST:
Σ,∆ ` st; st,∆′[Ξ′,Λ′]

(4.15)

Functions. Since functions f ∈ F are composed of a sequence of individual statements,

the semantics is defined similar to boolean conditions as the aggregated sequential eval-

uation of their statements.

Func:

∀fi ∈ f : i = 1...n, ∆ ⇁ ∆0, Ω ⇁ Ω0

Σ,∆i−1 ` fi
εi
;
ω!αi

fi, ∆i[Ξ′,Λ′] Ωi−1 ` svc
ω?αi
↪→ svc′i, Ωi[ε′i]

Ω,Σ,∆ ` f ε
; f, ∆n,Ωn[ε′]

(4.16)

As the individual statements are fi ∈ (ST ∪ SD ∪ SC), three cases are distinguished:

• Service interacting statements fi ∈ SC specify an operation to call αi 6= ∅ and

the second premise on the right-hand side is applicable, which incorporates syn-

chronous handshaking communication with the appropriate service process svc.

These statments may not change the context, and thus ∆i = ∆i−1.

• Service dependant statements fi ∈ SD expect a set of required event and operation

data εi 6= ∅ in order to get evaluated. On evaluation these statements may change

results or variable values.

• Regular function statements fi ∈ ST without requiring any data from services or

issuing operation calls, but still change the context.

Obviously in the latter two cases, when αi = ∅, the environment is unchanged Ωi = Ωi−1.

Again, ε =
n⋃
i=1

εi are requirements of individual function statements.

Informally, application of this rule evaluates each statement of a function in sequence,

where service dependant functions require the appropriate event data or operation re-

sults/errors to be present in the context Σ. Conversely, service call statements com-

municate with services and ultimately result in certain event data getting published by

corresponding services on or after interaction.
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Actions. The semantics definition of action elements a ∈ A is adapted to account for

propagated service requirements from its condition and function semantics:

Action1:

Σ ` executed(Σ, a) ; false

Σ,∆ ` a.cond εc
; true

Ω,Σ,∆ ` a.func
εf
; a.func, ∆′,Ω′

Ω,Σ,∆ ` a
εc ∪ εf
; a, ∆′,Σ′[executed

∪
= a],Ω′

(4.17)

Action3:
Σ,∆ ` a.cond εc

; false

Σ,∆ ` a εc
; a

(4.18)

Activation and Micro layer

Relations of the activation and micro layer get also annotated by service requirements

ε, each collecting these from their premises, similarly as boolean condition and function

relations of the atomic layer. However, they have no effect on the semantics of the

activation and micro layer, and thus, are not enumerated here for the sake of brevity.

Macro layer

On the macro layer, the modeling of service interaction allows to redefine the updated

function to describe the changes necessary for an updated external context Σ more

faithfully: updated(Ω,Σ) := get(Ω, ε) 6= get(Σ, ε). Here, ε are the cumulative service

dependencies (event or operation response data) of a macro step, which break down to

all dependencies of functions and boolean conditions (atomic layer) getting evaluated in

the quiescence premise of the macro relation. Hence, the model can only transition via

the macro relation if all requirements ε are met in the context Σ′.

Macro:

Σ′ =

{
Ω if updated(Ω,Σ)

Σ else

Σ′ ` ∆
ε

=⇒↓ ∆′,Ω′

Ω ` (Σ,∆) ∗−→ (Σ′,∆′),Ω′
(4.19)
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Execution layer

Besides modeling execution of the core model and its effects on corresponding services,

the Exec relation also captures progress of service processes on its own. As already

outlined in the formal semantics of RSM in Section 4.3, services may take transitions

not issued via communication or also emit events when stuttering (no change of service

state). Formally, the synchronous (and independent) transition of services is stated in

the following rule:

Exec:

Ω ` (Σ,∆) ∗−→ (Σ′,∆′),Ω′

∀svci ∈ Ω′ : Ω′ ⇁ Ωsvc

Ωsvc ` svci ↪→ svci, Ω′svc ⇀ Ω′′

(Ω,Σ,∆) 7→ (Ω′′,Σ′,∆′)
(4.20)

Macro steps may issue service interaction by invoking operation calls and thus might

inflict changes to the environment, producing Ω′. The independent semantic transitions

of all services in changed environment Ω′, result cumulatively in environment configura-

tion Ω′′, which also holds emitted events from stuttering or non-interaction transitions

of relevant service processes. Ω′ ⇁ Ωsvc emphasizes the fact that provided values of a

service svc do not conflict with values of other services in environment Ω′′.

In conclusion, service interaction can be statically checked for inconsistencies in the

execution semantics, by enumerating service dependencies ε of a concrete execution

model ∆, and checking their availability in environments Ω.



Chapter 5

Model Validation

This chapter elaborates on employed validation techniques of RCM/RSM syntax and

semantics. In contrast to the approaches presented here, formal verification of the lan-

guages would require further translation of the formal semantics to input languages of

model checking or automated theorem proving systems (e.g. Promela for SPIN [37] or

Isar for Isabelle [50]) and thus is beyond the scope of this thesis. However, the follow-

ing three validation approaches, already provide a fair estimate on the correctness and

applicability of the employed formalisms.

• Expressiveness of syntax. Well known and often encountered coordination

problems are realized using RCM syntax, where modeling techniques and expres-

siveness get analyzed and critically reflected. Considered concepts are concurrency,

error handling and loops in different application scenarios, which were also used in

a full demonstrative application (see Appendix A).

• Intended and formal semantics. Key points of coordination models are exam-

ined, where the intended behavior of an RCM instance is compared with derivation

trees of applying formal operational semantics according to the modeled rules. The

rigorous application of SOS rules allows for a very fine-grained analysis of individ-

ual evaluation steps of the execution semantics.

• Service interaction. Known problem scenarios, where faults can only be de-

tected by considering service interaction of the coordination model, are taken into

account. Scenarios of this kind are given by instances of RCM and RSM, where

the interaction is examined by formally deriving the detailed sequence of operation

calls and emitted events when executing the core model. One of the researched

properties in these situations is reachability of states in core and service models.
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5.1 Expressiveness of syntax

Composition

Besides examples given throughout this thesis, the first scenario in this section again

reflects on the compositionality of RCM states. The composite state ObjectRecognition

implements coordination of an object recognition and database storage service and is

presented in Figure 5.1. The two services are referred to as obj rec, which provides an

event recognized objects, and db, which provides operations to store and query data

(e.g. get or add operations).

First, the database service is accessed to retrieve the extrinsic camera calibration stored

as a transform from origin to the camera (o t c). Then, DetectObject waits for rec-

ognized objects and filters recognition results based on the parameterized label and

check z-flag. If no or the wrong objects are detected by the service, this state will not

exit. Once a correct object is detected, the result o t x gets calculated and set. The

next state GetGraspPose then uses this result (as parameterized) to calculate a graspable

pose and saves it as own result o t x. Finally, SaveObjectPose uses the database service

to store the pose at the configured key. ObjectRecognition exits via the success port if

the pose was saved successfully (service db returned the key as result for operation add).

On the other hand, the error port gets triggered when either loading or saving of the

poses failed (port condition is omitted in figure).

Conclusion of ObjectRecognition:

• The example shows parameter passing from parent to children, but also parame-

terization by sibling results. The mechanism realizes a clear separation of scopes,

where at first it might be a bit unintuitive as scopes of parameter expressions are

different from the used scope in functions or actions.

• Parameterization also allows for setting constant values of parameters in states on

all levels of the hierarchy. When re-using existing state hierarchies, these default

values can be used as a starting point.

• On the other hand, results need to be set via actions. In spite of the laborious

nature of this necessity, this also ensures that lower level functionality does not

accidentally change values of upper layers, which was a mature issue in previous

protoypes.
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params: (label,’Tape’), (min confidence,0.25), (key,’o t ee’),

(check z,True), (reorient,True)

results: pose

ObjectRecognition

success
chi.SaveObjectPose.port.success

error

results: o t c

entry: svc.db.get(’transforms’,’o t c’)

actions:
- cond: svc.db.get

func: res.o t c = svc.db.get.result

GetCameraPose

success
res.o t c

error
svc.db.get.error

params: (label,par.label), (check z,par.check z),

(min confidence,par.min confidence)

results: o t x

actions:
- cond: svc.obj rec.recognized objects

func: [...] res.o t x = [...]

DetectObject

success
res.o t x

params: (label,par.label), (reorient,par.reorient),

(o t x,chi.DetectObject.res.o t x)

results: o t x

entry: [...] res.o t x = [...]

GetGraspPose

success
res.o t x

params: (o t x,chi.GetGraspPose.res.o t x),(key,par.key),

entry: svc.db.add(’poses’,’id’:par.key,’value’:par.o t x)

SaveObjectPose

success
svc.db.add.result == par.key

error
svc.db.add.error

Figure 5.1: ObjectRecognition state comprised by a sequence of indi-
vidual states. Actions of states DetectObject and GetGraspPose are
not detailed any further and the notation expresses that the according
result gets eventually set.
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Decisions and fallback

A sophisticated (but still simplified) Pick state is outlined as an example for alternative

logical flows in a state, as well as handling errors with contingency (self-correcting).

Figure 5.2 shows the graphical representation of this coordination scenario. Most of the

functionality, like grasping and approaching, is abstracted away in this example to keep

focus on the alternative branching of coordination. Also note that the Pick error port

is also triggerd on TeachPose error, but not shown connected to keep the visualization

simple.

Pick is parameterized by a variety of approaching and grasping relevant values, where

the most important parameter pose is used to query the object pose to pick from the

database service (as in the last example). Consequently, the functionality of this example

complements the ObjectRecognition state and can be used to pick a pose determined by

object recognition.

After opening the gripper via the corresponding service in state Release, the GetPose

state queries said object pose from the database service. At this point, a conservative

implementation of Pick has to abort via the error port in case the specified pose should

not be available in the database. However, the presented scenario tries to mitigate

this fault by activating the TeachPose state in this case. It is assumed here that the

TeachPose state is implemented to instruct the operator to move the robot in gravity

compensation to the desired position and saves this pose to the database. Conversely,

when the pose is available in the first place, the robot would approach it in the Approach

state. Both alternative execution paths result in the state Grasp, which simply closes

the gripper to the desired width and fails if no part is detected. In the latter case the

Pick should not abort as well, but should retreat the robot first. This is achieved by

transitioning also from the error port to Retreat. Finally, the state CheckPart decides

whether the pick was successful or not.

Conclusion of Pick :

• The presented model allows for different paths depending whether the pose is

already known (successfully retrieved from database) or not. In this case, this

enables to take alternative action and correct foreseeable errors.

• Similarly, the transition from Grasp’s error port, allows to fall back on unex-

pected errors (e.g. due to the variable environment). However, this could be also

implemented differently as an action with condition chi.Grasp.port.error and

function res.success = False which could in turn activate the error port of Pick.

• All in all, this shows the provided flexibility in handling errors or unexpected

situations with port and action mechanisms.



CHAPTER 5. MODEL VALIDATION 67

params: (pose,’o t ee’), (width,0.03), (force,40), (teach,False),

(approach vec,[0,0,0.1]), (retreat vec,[0,0,-0.1])

Pick

success

error

Release

success

error

params: (pose,par.pose)

results: o t ee

GetPose

successerror

TeachPose

success

error

params: (o t ee,chi.GetPose.res.o t ee),

(approach vec,par.approach vec)

Approach

success

error

params: (width,par.width), (force,par.force)

results: actual width

Grasp

success

error

params: (retreat vec,par.retreat vec)

Retreat

success

error

CheckPart

success

error

Figure 5.2: Example implementation of Pick which falls back on teach-
ing if a pose should be unavailable
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params: (f min, 0.5), (axes, [’y+’,’y-’])

HapticGesture

X+
chi.GetAxis.res.axis == ‘x+’

X-
...

Y+
...

Y-
...

Z+
...

Z-
...

entry: svc.robot.reset safety()

WaitContact
contact
svc.robot.contact params: (f min, par.f min),

(axes, par.axes)

results: axis

actions:
- cond: svc.robot.robot state

func: see Listing 5.1

GetAxis

no-gesture
res.axis == ‘none’

gesture
res.axis != ‘none’

Figure 5.3: HapticGesture state, which loops until a configured mini-
mal force f min is detected on any of the parameterized axes

Iteration

The HapticGesture composite state is a typical example, where two states are looped

until a certain input is detected by the robot, and is shown in Figure 5.3. In this case, the

first state WaitContact listens on a contact event (svc.robot.contact), after which,

external force measurement of the robot state gets extracted and interpreted in state

GetAxis. If the detected force on the robot is too low or is not in the parameterized axes,

the process restarts by transitioning into WaitContact again. Once the minimum force

f min in a configured axis is detected, the GetAxis state provides the result axis, which

exits HapticGesture with the corresponding port. Additionally, this example showcases

the function language by depicting the function content of GetAxis’ action in Listing 5.1.

Conclusion of HapticGesture:

• This example shows a while-like loop, where GetAxis provides a sophisticated

example of processing event data in a function in order to decide on iteration or

termination of the loop.

• Also, the state HapticGesture is a good example for emphasizing the explicit inter-

face of RCM states. It’s two parameters f min and axes fully specify its functional-

ity and even restrict possible outcomes (port activations). The latter is convenient

practice to dynamically specify state behavior without changing its syntactic struc-

ture, i.e. the number of ports is fixed for all instantiations of HapticGesture (should

it get re-used).
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Listing 5.1: Function code of GetAxis action

f_ext_hat = svc.robot.robot_state.f_ext_hat

axis = [’x’, ’y’, ’z’]

f_max = 0

axis_max = ’none’

for i in range(len(f_ext_hat)):

if axis[i] in par.axes:

f = f_ext_hat[i]

if abs(f) > par.f_min and abs(f) > f_max:

f_max = abs(f)

if f > 0:

axis_max = axis[i] + ’+’

else:

axis_max = axis[i] + ’-’

res.axis = axis_max

Concurrency

The SearchObject state composes the previous ObjectRecognition and HapticGestures

example states to additionally abort the object recognition by haptic interaction. Besides

containing concurrency, this example also shows how results are set on a composite state

before exiting and is depicted in Figure 5.4.

The barrier as first element enables both, ObjectRecognition and HapticGestures con-

currently, where the functionality of these states is explained in the corresponding ex-

amples. Note that parameterization of SearchObject is not modeled to highlight, that

constant (default) values of parameters can be specified on any level of the state hi-

erarchy (but have to be resolvable on activation). In this case, this fixes ObjectRecog-

nition to recognize objects with label==’Tape’, while HapticGesture only reacts on

haptic interaction along the z- axis. Should ObjectRecognition find a ’Tape’ object,

the composite state stores the pose result as its own result via an action reacting on

chi.ObjectRecognition.res.pose, before triggering port success. This practice relies

on the fact that results are written before relevant ports get triggered by their condition.

Should an error occur while detecting the object the SearchObject state will exit on the

error port, while alternatively, the human operator can abort the process by issuing a

haptic gesture along the negative z axis. In both cases, all states in SearchObject are

deactivated, no matter what caused deactivation of the composite state.
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results: pose

actions:
- cond: chi.ObjectRecognition.res.pose

func: res.pose = chi.ObjectRecognition.res.pose

SearchObject

success

error

params: (label,’Tape’), (min confidence,0.25),

(key,’o t ee’), (check z,True),

(reorient,True)

results: pose

ObjectRecognition

error

success

params: (f min, 0.5), (axes, [’z-’])

HapticGesture

X+ X- Y+ Y- Z+ Z-

Figure 5.4: SearchObject state which is composed of other exemplary
states ObjectRecognition and HapticGesture to model preemptive ges-
tures while detecting objects

Conclusion of SearchObject :

• The SearchObject state models two simultaneously active states which alternatively

result in fulfillment of port conditions, causing both states to deactivate. This re-

sembles an OR-case of composing states, where an AND-composition would require

a barrier which synchronizes both concurrent paths (constructed examples can be

found in Section 5.2).

• Most common use of this syntax is to provide multiple interaction mechanisms,

where each of them can be used alternatively to confirm or abort certain tasks.
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5.2 Intended and formal semantics

This section elaborates on selected examples to highlight cases where execution semantics

may not be straight-forward from intention alone. First, the scenario is described by

the graphical representation of the state at hand with some additional information on

assumed external communication or when certain ports activate in order to reach the

discussed situation. Then, the intended behavior is stated and validated using formal

execution semantics, by applying the respective SOS rules and building a derivation tree.

For the sake of breviety, only the first couple of examples are fully derived here, where

the remaining derivation trees can be found in Appendix B.

Action execution on state preemption

The first scenario investigates the state preemption mechanism by answering the question

whether state functions get preempted when a port activates, where the examplary state

SumTestData is shown in Figure 5.5.

params: (max, 10)

results: sum

entry: res.sum = 0

actions:
- cond: svc.test.data

func: data = svc.test.data

for i in range(len(data)):

res.sum += i

SumTestData

max reached

res.sum >=

par.max

Figure 5.5: State with enabled port condition during action execution

Scenario:

• Two data events of service test are received in macro step 1 and 2

• Event data has length 8, leading to the fulfilled port condition in macro step 2

• When is the state SumTestData preempted? Is the function executed completely?

Intention:

• When the first event is received, the result sum gets increased to a final result of 8

• On the second event, the action gets executed again, increasing the value of

res.sum to 16

• The port condition is fulfilled, and state SumTestData gets deactivated
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Formal derivation:

The environments Ω0 and Ω1 hold the first and second data event respectively, which

leads to two macro steps in this execution. It is assumed that the state SumTestData,

named s hereafter, is already entered and activated when the first macro step is pro-

cessed. The single port max reached is denoted as p.

Execution sequence of two Exec/Macro steps:

(Ω0,Σ0,∆0) 7→ (Ω1,Σ
′
1,∆1) 7→ (Ω2,Σ

′
2,∆2)

...
Ω0 ` (Σ0,∆0) ∗−→ (Σ′1,∆1),Ω1

(Ω0,Σ0,∆0) 7→ (Ω1,Σ
′
1,∆1)

...
Ω1 ` (Σ′1,∆1) ∗−→ (Σ′2,∆2),Ω2

(Ω1,Σ
′
1,∆1) 7→ (Ω2,Σ

′
2,∆2)

The first macro step consists of only one micro step, namely stuttering and action exe-

cution as defined in rule SProp.

Macro 1:

Σ1 = Ω0

...
Σ1 ` ∆0 =⇒ ∆1,Σ

′
1

Σ1 ` ∆0 =⇒↓ ∆1,Σ
′
1

Ω0 ` (Σ0,∆0) ∗−→ (Σ′1,∆1)

Micro 1-1:

∆0 ` s.active; true

...

Σ1,∆
0 ` a1 ; a1,∆

1,Σ′1
a1 ∈ s.actions ∆0 ⇁ ∆0, ∆1 ⇀ ∆1 active states(∆1, s) = ∅

Σ1,∆0 ` s −→ s,∆1,Σ
′
1

Σ1 ` ∆0 =⇒ ∆1,Σ
′
1

Σ1 ` executed(Σ1, a1) ; false

Σ1,∆
0 ` a1.cond; true

Σ1,∆
0 ` a1.func; a1.func,∆

1[res.sum = 8]

Σ1,∆
0 ` a1 ; a1,∆

1,Σ′1[executed
∪
= a1]
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The second macro step starts with a very similar micro step (left out as the same rules

are applied), but the result sum holds value 16 after evaluation. As a consequence, the

premises of micro rule PTrigger are fulfilled, and the quiescence relation expands into a

second micro step, which activates the port and consequently exits state s.

Macro 2:

Σ2 = Ω1

...
Σ2 ` ∆1 =⇒ ∆′,Σ′2

...
Σ′2 ` ∆′ =⇒ ∆2

Σ2 ` ∆1 =⇒↓ ∆2,Σ
′
2

Ω1 ` (Σ′1,∆1) ∗−→ (Σ′2,∆2)

Micro 2-2: Note that the s.active check is omitted due to the limited space

Σ′2,∆ ` p.cond; true

...

Σ′2,∆
′ ` s −→↓ s′,∆′′′

∆′′′ ` p.active; false

∆′′′ ` p; p′[active = true],∆2

p ∈ s.ports
Σ′2 ` ∆′ =⇒ ∆2

Deactivation of s with s.active check omitted:

s.children = ∅ Σ′2,∆
′ ` s.exit; s.exit,∆′′

∆′′ ` s.active; true

Σ′2,∆
′′ ` s; s′[active = false],∆′′′

Σ′2,∆
′ ` s −→↓ s′,∆′′′

In the final model state ∆2, state s got deactivated after executing its action a second

time, thus with result res.sum = 16, and port p is active.

Transitions on state preemption

The second example considers the case when a parent port depends on activation of a

connected child port (as seen in Figure 5.6). The execution semantics have to define

whether the transition is processed or preemption by activation of the parental port

precedes.

Parent
pP

chi.A.port.pA
A

pA
B

Figure 5.6: Scenario which investigates port activation of composite
state Parent when a connected child port gets activated
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Scenario:

• Port pA gets activated in macro step 1 and is connected to state B

• Parental port pP gets triggered on activation of pA

Intention:

• Upon activation of pA, state A gets deactivated first

• pP gets enabled, which deactivates and preempts state Parent

Formal derivation:

It is assumed that states Parent and A, referred to as sP and sA, are already active

when evaluationg macro step 1, which leads to a single execution step.

Execution: ...
Ω0 ` (Σ0,∆0) ∗−→ (Σ1,∆1)

(Ω0,Σ0,∆0) 7→ (Ω1,Σ1,∆1)

The macro step consists of two micro steps: First sP propagates to its active child sA,

as no transitions are pending, and port pA activates by application of rule PTrigger.

Macro 1:

Σ1 = Ω0

...
Σ1 ` ∆0 =⇒ ∆′

...
Σ1 ` ∆′ =⇒ ∆1

Σ1 ` ∆0 =⇒↓ ∆1

Ω0 ` (Σ0,∆0) ∗−→ (Σ1,∆1)

Micro 1-1:

∆0 ` sP .active; true sP .actions = ∅

...

Σ1,∆A ` sA −→ s′A,∆
′′
A ⇀ ∆′

sA ∈ active states(∆0, sP ) : ∆0 ⇁ ∆A

Σ1,∆0 ` sP −→ sP ,∆
′

Σ1 ` ∆0 =⇒ ∆′

PTrigger of sA, where the active check and exit function execution is omitted. For details

on state deactivation sA −→↓ s′A see the last example. Also, [active] is used instead of

[active = true].

Σ1,∆A ` pA.cond; true

...

Σ1,∆A ` sA −→↓ s′A,∆′A

∆′A ` pA.active; false

∆′A ` pA ; p′A[active],∆′′A
pA ∈ sA.ports :

Σ1,∆A ` sA −→ s′A,∆
′′
A
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In the second macro step, the parent state sP does not transition candidate ports,

because rule PTrigger has higher priority than PTrans1 (definition sequence).

Micro 1-2: Is then PTrigger of sP , as the condition of port pP evaluates to true (sP .active

check is omitted).

Σ1,∆
′ ` pP .cond; true

...

Σ1,∆
′ ` sP −→↓ s′P ,∆′′′′

∆′′′′ ` pP .active; false

∆′′′′ ` pP ; p′P [active],∆1

pP ∈ sP .ports :

Σ1,∆
′ ` sP −→ s′P ,∆1

Σ1 ` ∆′ =⇒ ∆1

Deactivation of sP , with four premises getting evaluated as indicated by the contexts,

propagating up with (∆′A,∆
′
B) ⇀ ∆′′. The fourth premise, which sets s.active to false

and results in context ∆′′′′, is omitted in this derivation step to focus on the sequence of

child deactivation and exit-function evaluation.

...

Σ,∆A ` sA −→↓ s′A,∆′A

...

Σ,∆B ` sB −→↓ s′B,∆′B
sA, sB ∈ sP .children : ∆′ ⇁ (∆A,∆B) Σ1,∆

′′ ` s.exit; s.exit,∆′′′

Σ1,∆
′ ` sP −→↓ s′P ,∆′′′′

Deactivation of the children sA and sB is then done by applying rule SDeact1 to the

already inactive states, but potentially active ports (pA) get deactivated to preempt

transitions. As the deactivation of sB is trivial, only sA −→↓ s′A is included here.

∆A ` sA.active; false

∆0 ` p1.active; true

∆0 ` p1 ; p′1[active = false],∆1 ⇀ ∆′A
pA = p1 ∈ s.ports : ∆A ⇁ ∆0

Σ,∆A ` sA −→↓ s′A,∆′A

This derivation tree (especially the last expansion seen above) clearly shows, that all

active ports and barriers are preempted when deactivating the parent state.

Action execution sequence

The scenario presented in this subsection elaborates on the sequence of action execution,

where the constructed situation is depicted graphically in Figure 5.7. Considered issues

are whether execution of an action does precede the transition from pA to B or similarly

if the second action is executed before or after B’s entry function.
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actions:
1) cond: chi.A.port.pA

func: ...

2) cond: chi.B

func: ...

Parent

A
pA

B

Figure 5.7: Exemplary state used for researching action execution se-
quence relative to transitioning semantics

Scenario:

• Port pA gets activated in macro step 1 and is connected to state B

• Two actions a1 and a2 react on activation of pA and B respectively

• In what sequence are these actions executed relative to the entry function of B?

Intention:

• After pA got activated, the corresponding action has a fulfilled condition and exe-

cutes, before B gets activated as destination of port pA

• Upon activation of B, the entry function gets executed, while a2 only executes

after B was activated

Formal derivation:

Even though the formal derivation tree of executing this scenario is pretty straight-

forward, only the sequence of micro steps is included here for the sake of breviety. The

full derivation tree of this and the following scenarios can be found in Appendix B.

From the scenario it is assumed that the parent state sP and state sA are active when

evaluating the first macro step.

Execution with one macro step:

• Micro 1-1: SProp of sP , with no action conditions fulfilled; PTrigger of sA, evalu-

ating exit function of sA and setting pA active

• Micro 1-2: PTrans1 of sP , where a1 gets evaluated due to chi.A.port.pA evalu-

ating to true, and a transition from pA to B gets taken, which executes the entry

function of B and ultimately activates B

• Micro 1-3: SProp of sP , with a2 being executed because chi.B is fulfilled; SProp

of sB with no further action evaluations or progress; quiescence reached
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The formal derivation into three consecutive micro steps, clearly shows that the sequence

of function evaluation conforms to the intention stated above.

Concurrent port activation (same destination)

The first example coping with concurrent port activation, describes the situation where

ports with simultaneously fulfilled conditions have the same destination state. The

configuration visualized in Figure 5.8 is also mentioned when defining micro layer rules

in Section 3.4.

Parent

A
pA

B
pB

C
pC

D

Figure 5.8: Composite state with concurrently activating child ports
(same condition) and identical destination

Scenario:

• Ports pA and pB activate in macro step 2 and point to the same destination C

• The condition of pC is fulfilled in macro step 3

Intention:

• At first, the barrier activates A and B

• As both ports pA and pB are active simultaneously, B gets activated by transition-

ing any of these two active ports

• Finally, when pC activates, D gets activated and is the only active state

Formal derivation:

With sP as the composite state, barrier b and states sA, sB, sC and sD, the execution

of this scenario is described by three macro steps, where the first macro step starts with

the activation of sP .

Execution with three macro steps:

• Micro 1-1: SAct1 of sP , which also activates first child b

• Micro 1-2: PTrans2 of sP transitioning active barrier b to sA and sB, before

quiescence is reached.
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• Micro 2-1: SProp of sP , where PTrigger is applicable to sA and sB as the respective

conditions are fulfilled

• Micro 2-2: PTrans1 of sP with two pending transitions from pA to sC and pB
to sC . Evaluation order is not constrained and typically determined by order of

states sA and sB in the children set of sP . Assumining the transition originating

from pA is evaluated first, the destination state sC gets activated via rule SAct1.

The transition from pB evaluated afterwards, results in application of rule SAct2,

as state sC is already active, and quiescence is reached.

• Micro 3-1: SProp of sP and PTrigger of sC as port condition of pC is fulfilled

• Micro 3-2: PTrans1 of sP as port pC is active. After transitioning to state sD
quiescence is reached and the exemplary execution is finished

In case of concurrently active ports, the evaluation order of the pending transitions does

not matter as the activation of states is not affected by the cause of activation. Even

though barriers do keep track of the originating port when transitioning, this also is not

affected by the sequence in which inbound ports are transitioned.

Concurrent port activation (different destinations)

The second example researches concurrent port activation with different destination

states, but with consideration of state preemption. The scenario is depicted in Figure 5.9

and is comprised by a similar setup as the previous example. This time, however, the

ports pA and pB have different destination states, while a parental port condition depends

on activation of one of these destination states.

Parent

pP

chi.C.active

A
pA

B
pB

C

D

Figure 5.9: Composite state with simultaneously active child ports,
transitioning to C and D, but preempting upon activation of C
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Scenario:

• Ports pA and pB activate both in macro step 2

• Parental port pP triggers on activation of state C

• Will D get entered before pP preempts all active states in Parent? Does it depend

on evaluation order of transitions from pA and pB?

Intention:

• At first, the barrier activates A and B

• Both, pA and pB activate states C and D respectively

• Only after both transitions were taken, the port pP will get evaluated and preempts

Formal derivation:

The formal execution tree of state sP in this scenario starts off very similar to the

previous example and is described by two macro steps in total.

Execution with two macro steps:

• Micro 1-1: SAct1 of sP , which also activates first child b

• Micro 1-2: PTrans1 of sP transitioning from b to sA and sB, before quiescence is

reached.

• Micro 2-1: SProp of sP , where PTrigger is applicable to sA and sB as the respective

conditions are fulfilled

• Micro 2-2: PTrans1 of sP with two pending transitions from pA to sC and pB to

sC . In this scenario, the unconstrained evaluation order results in two possible

sequences in which states sA and sB get activated. However, at the end of this

micro step the states are active in both alternatives.

• Micro 2-3: PTrigger of sP , as the condition of port pP evaluates to true. Quies-

cence is reached after preemption of both active child states sA and sB.

The formal sequence of taken steps clearly shows that also in this case evaluation order

does not influence execution semantics and state sD gets activated before preemption

by port pP takes place.
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5.3 Service interaction

This section examines configurations of RCM and RSM intances, where faults like un-

reachable states or unavailable operations are detectable by formally deriving the indi-

vidual steps of executing an RCM instance in a given scenario of services described by

RSM instances.

Deadlock and Reachability

This example scenario elaborates on the detection of deadlocks in service interaction.

Here, the constructed RCM and RSM instances eventually result in state where coor-

dination cannot progress any further because it waits for a service response which will

never get issued. Conversely, certain RCM states are not reachable in this situation,

which hints on the violated reachability property of the RCM instance. Figure 5.10

shows the exemplary RCM and RSM instances of this scenario.

Root

entry: svc.S1.op1()

A
success
svc.S1.op1.result

entry: svc.S1.op2()

B

X Y

reset op1

op2

S1

Figure 5.10: Deadlock example, where the RCM (top) and RSM (bot-
tom) instances get stuck and cannot progress any further

Scenario:

• S1 is in state X and Root activates in the first macro step

• Root is the only entity interacting with service S1 (closed world assumption).

• The first state A invokes operation op1 of service S1, where A is left when condition

svc.S1.op1.result is fulfilled, which requires response to the invoked operation
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• Service S1 only responds to the deferred transition of operation op1 when opera-

tions op2 or reset are invoked

• Is state B reachable?

Intention:

• State A activates and issues call of operation op1, which changes service state to

Y and defers response

• The success port of A only triggers with op1 getting returned, but as the transition

is deferred, a response is only generated when op2 or reset get invoked

• The configuration cannot progress any further and state B is not reachable

Formal derivation:

The states Root, A and B are referred to as sR, sA, sB, where S1 and its service states

are denoted as svc1, ssX and ssY . The transition from ssX to ssY triggering on op1 is

referred to as t1. It is assumed that the first micro step in the first macro step is the

initial activation of sR.

Execution 1: The first execution step consists of a macro step and a service transitition.

...

Ω0 ` (Σ0,∆0) ∗−→ (Σ1,∆1),Ω
′

...

Ωsvc ` svc1 ↪→ svc1, Ω′svc
svc1 ∈ Ω′ : Ω′ ⇁ Ωsvc Ω′svc ⇀ Ω1

(Ω0,Σ0,∆0) 7→ (Ω1,Σ1,∆1)

Macro 1: As already stated, the first macro step is assumed to just consist of a micro

step which activates sR.

Σ1 = Ω0

...
Ω0,Σ1,∆0, ∅ ` sR −→↑ s′R,∆1,Ω

′

Ω0,Σ1,∆0 ` sR −→ s′R,∆1,Ω
′

Ω0,Σ1 ` ∆0 =⇒ ∆1,Ω
′

Ω0,Σ1 ` ∆0 =⇒↓ ∆1,Ω
′

Ω0 ` (Σ0,∆0) ∗−→ (Σ1,∆1),Ω
′

Activation of sR, with omitted sR.active check

∆0 ` sR.active; false

∆0 ` sR ; s′R[active = true],∆′

...

Ω0,Σ1,∆sA , ∅ ` sA −→↑ s′A,∆′sA ,Ω
′

sA ∈ sR.first : ∆′′ ⇁ ∆sA , ∆′sA ⇀ ∆1

Ω0,Σ1,∆0, ∅ ` sR −→↑ s′R,∆1,Ω
′
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Activation of sA, with omitted sA.active check.

∆sA ` sA.active; false

∆sA ` sA ; s′A[active = true],∆′

...

Ω0,Σ1,∆
′ ` sA.entry ; sA.entry,∆

′
sA
,Ω′

Ω0,Σ1,∆sA , ∅ ` sA −→↑ s′A,∆′sA ,Ω
′

The operation call is performed when evaluating the entry function of sA, which just

consists of the single operation call statement f1 ∈ SC:

...

Ω0,Σ1,∆
0 ` f1 ;

ω!α1

f1

...

Ω0 ` svc1
ω?α1
↪→ svc′1, Ω1

f1 ∈ sA.entry : ∆′ ⇁ ∆0, Ω0 ⇁ Ω0, Ω1 ⇀ Ω′

Ω0,Σ1,∆
′ ` sA.entry

ε
; sA.entry, ∆′′,Ω′

Σ1 ` f1.svc; svc1 6= ∅
α1 = f1.op(f1.op) 6= ∅
ω = channel(Ω0, svc1)

Ω0,Σ1,∆
0 ` f1 ;

ω!α1

f1

The invoked operation results in a service state transition of svc1. Even though applying

the rule Trans1 for service progress, the environment stays unchanged and Ω1 = Ω0, be-

cause no events are emitted when transitioning t1 and the operation response is deferred,

i.e. ε = ∅. After transitioning, the current service state of svc1 is ssY .

t1 ∈ svc1.trans :

t1.src = svc1.cur = ssX
α1 = t1.operation ω = channel(Ω0, svc1)

ε = t1.respond ∪ t1.events = ∅
put(Ω0, ε) = Ω1 = Ω0

Ω0 ` svc1
ω?α1
↪→ svc′1[cur = t1.dst = ssY ],Ω1

In the execution step, the service svc1 transitions with application of rule Stutter:

ε = svc.cur.events = ∅
put(Ωsvc, ε) = Ω′svc = Ωsvc

Ωsvc ` svc1 ↪→ svc1, Ω′svc
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The derivation tree of this first execution step, which consists of an RCM macro and

service stuttering step, clearly shows all individual evaluations and their effects on the

modeled contexts. In this scenario, it can be shown, that environments Ω0, Ω′ and Ω1

of the first execution step and Ωi of any following execution steps i > 1 are equivalent.

Furthermore, they do not contain operation response data required for evaluation of the

success port condition of state sA. The relevant parts of the derivation tree are the

applied Trans and Stutter relations of the service svc1, because they result in evaluation

of the put function, which emits operation response or event data ε into an environment.

However, the determined ε will always be the empty set until either the op2 or reset op-

eration get invoked, which cannot happen in the modeled scenario as the RCM instance

is the only process interacting with the service.
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Chapter 6

Conclusion

The EMB.RACE ecosystem with RACE-Core and RACE-Services is a novel system ar-

chitecture for robot operation and programming. This thesis represents the foundation

for developing the infrastructure past research prototypes. The presented formaliza-

tion enables rigorous checking of model properties, proving of intended functionality

and overall provides a better understanding of the employed models. This is especially

important when developing the executive or other tools which interact with the model.

However, there is still room to improve the RCM semantics, as some of the currently

defined SOS rules are very complex. A possible approach is to move some of the premise

constraints into appropriate functions which could simplify concrete premises in the se-

mantic rules. Futhermore, and as already stated in the beginning of Chapter 5, formal

verification of the presented formalism - and instances thereof - was not conducted and

is an important next step to take. In order to verify certain language properties like

determinism, run-to-completion or reachability, the formal semantics have to get trans-

lated into an appropriate input language of a model checker or theorem proving system.

Related to this, formal verification presented in [22, 23] for the PLEXIL coordination

language might serve as a good starting point. As for the RSM, additional research and

experience is surely beneficial and it has to be checked, whether all proposed functionality

can be achieved with the current generic interface. Although EMB.RACE is conceived

to be middleware-agnostic, it should be considered to integrate with other model-based

approaches like BRICS [18], which already solves some of the faced problems.

While the formal semantics primarily address validation and verification on the way to

certifiability of implemented software components, the process of formalizing already un-

covered shortcomings of the syntax, leading to an overall iterative development process

of the language. The ultimately resulting syntax and semantics of RCM provide very

intuitive, flexible and expressive mechanisms for modeling robotic applications. The
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architecture utilizes a separation of low-level (hard real-time) reflexes with handling of

their occurrence in high-level task coordination to create a convenient, but safe frame-

work for programming and operating robots. Error-handling in general can be modeled

with RCM in various alternative ways, which is very valuable considering the variable

system composition and dynamic environment of robotic systems. Moreover, the im-

plemented prototypes of the core, services and clients already have proven to be very

useful when realizing several demonstrators or in week-length evaluation sessions with

students. Even though prototypical, the implementations also support online visual-

ization and manipulation of the coordinaton model, which results in collaborative and

rapid development of robotic tasks.

To conclude, the proposed formalisms provide a suitable basis for the development of

such a sophisticated software architecture as EMB.RACE by paving the way for formal

methods which are essential to ensure human safety in robotic applications.
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Appendix A

Demonstrator

In course of this thesis a variety of demonstrative applications were developed using

EMB.RACE to validate and also improve different aspects of the system. This chapter

describes one of these deomstrators, which integrates many different services to achieve

the very common task of autonomously picking and placing objects.

The setup consists of an LWR-III robotic manipulator, equipped with a Schunk WSG50

gripper, on which a smartphone serving as graphical display and input device is mounted.

Additionally, a Kinect depth camera is positioned in the scene to detect objets on a table.

The whole system is depicted in Figure A.1.

Figure A.1: Demonstrator setup with LWR-III, gripper, display and
the kinect depth camera
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As the camera is arbitrarily mounted in the scenario, it has to be spatially registered

relative to the robot. This registration is also called extrinsic calibration, and is the first

task implemented in the demonstrator. After calibration was successful, the system can

recognize objects and calculate their poses. This leads to the second and main task of

the example scenario, which is, autonomously picking detected objects and placing them

somewhere else.

To conveniently perform both, calibration and pick-place, a variety of services are em-

ployed in this scenario:

• Robot. The robot service is used to control the robot’s movements and specify

its safety parameters and reflex behavior.

• Gripper. A service interface to control linear gripper movements like grasping

or releasing with certain width, velocity or force.

• KinectDriver. This component retrieves color and depth images from the

Kinect, calculates the point cloud and provides the data to other services.

• ObjectRecognition. Continuously recognizes objects in a given point cloud

and reports detected objects with pose and confidence as events.

• Database. A service providing persistent storage for all kinds of data. In this

case, it is used to store poses and transforms in between task executions.

• Display. A service used to show instructions and provide user interfaces to the

human operator. In this demonstrator, the smartphone mounted on the robot is

interfaced by this service.

• Audio. Provides operations to play sounds for user feedback purposes.

All these services are coordinated by the RCM states implementing the tasks. At the

top-level, both tasks are realized by four different composite states, namely CameraCal-

ibration, SearchObject, Pick and Place, where most of the implemented functionality is

outlined in Section 5.1.

CameraCalibration is done by letting the operator move the robot into the field of view of

the camera and detecting the robot’s end-effector as object with the appropriate service.

By averaging multiple measurements, the relative transformation from camera to robot

base is calculated and stored in the database. The display and audio service are used to

instruct to user and give feedback during the calibration process.

Place retrieves, similar to Pick, a parameterized pose from the database service. Should

the requested pose be unavailable, a fallback on teaching the pose via gravity compen-

sation is performed. In the nominal case, the robot approaches, places and retreats

robustly with integrated handling of potential collisions.
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Figure A.2: RACE-Pro client visualizing the composite ObjectRecognition state, while
detailed functionality and port configuration of the StorePose state are displayed in the
state editor window.

The application is exemplarily visualized by the two clients RACE-Pro and RACE-One

in Figures A.2 and A.3 respectively. The former shows the sequential structure of the

composite ObjectRecognition state, while also allowing for sophisticated configuration

of a state’s functions, ports or parameters via the state editor window. Note that the

depicted screenshot is from an early prototype, which uses a slightly different model

syntax. With a comprehensive user interface for all RCM features, the RACE-Pro client

addresses experienced users and task developers. RACE-One, on the other hand, maps

the full RCM to two layers: skills and tasks. This abstraction is used to translate the

complex hierarchical structure of RCM to the simpler composition of skills in tasks.

Both still represent RCM states, but limit complexity as also the sequential composi-

tion is restricted to a single nominal flow. Besides assembling into tasks, skills can be

parameterized by a context menu. RACE-One is developed for novice users to create or

change robot applications in an intuitive yet flexible manner .
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Figure A.3: RACE-One client depicting the two tasks of the demonstrative application
and highlighting the context menu of state SearchObject, which allows to change state
parameters.



Appendix B

Derivation trees

This appendix includes formal derivation trees of the examples considered in Chapter 5.

For every appended derivation, the graphical representation and scenario description is

also included here. Note that some premises, like checking whether states are active,

are omitted and [¬active] is used as shorthand notation for [active = false] due to the

limited space .

Action execution sequence

actions:
1) cond: chi.A.port.pA

func: ...

2) cond: chi.B

func: ...

Parent

A
pA

B

Scenario:

• Port pA gets activated in macro step 1 and is connected to state B

• Two actions a1 and a2 react on activation of pA and B respectively

• In what sequence are these actions executed relative to the entry function of B?

Formal derivation:

When assuming that composite state sp and the first state sA are active when evaluating

macro step 1, the execution of this scenario is described by a single Exec/Macro step.
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Execution: One Exec/Macro step ...
Ω0 ` (Σ0,∆0) ∗−→ (Σ1,∆1),Ω1

(Ω0,Σ0,∆0) 7→ (Ω1,Σ1,∆1)

Macro 1: In this scenario, the only macro step consists of three micro steps

Σ1 = Ω0

...
Σ1 ` ∆0 =⇒ ∆′

...
Σ1 ` ∆′ =⇒ ∆′′′

...
Σ1 ` ∆′′′ =⇒ ∆1

Σ1 ` ∆0 =⇒↓ ∆1

Ω0 ` (Σ0,∆0) ∗−→ (Σ1,∆1),Ω1

Micro 1-1: In the first micro step, SProp is applicable to sP where no action conditions are fulfilled.

Σ1,∆
0 ` a1.cond; false

Σ1,∆
0 ` a1 ; a1

Σ1,∆
0 ` a2.cond; false

Σ1,∆
0 ` a2 ; a2

∀ai ∈ sP .actions : i = 1...n, ∆0 ⇁ ∆0

...

Σ1,∆sA ` sA −→ s′A,∆
′′′
sA

sA ∈ active states(∆0, sP ) : ∆0 ⇁ ∆sA , ∆′′′sA ⇀ ∆′

Σ1,∆0 ` sP −→ sP ,∆
′

Σ1 ` ∆0 =⇒ ∆′

PTrigger of sA, as pA activates in this macro step by definition of the scenario.

∆sA ` sA.active; true

Σ1,∆sA ` pA.cond; true

...
Σ3,∆sA ` sA −→↓ s′A,∆′′sA ∆′′sA ` pA ; p′A[active = true],∆′′′sA

pA ∈ sA.ports :

Σ1,∆sA ` sA −→ s′A,∆
′′′
sA

Deactivation of sA:

∆sA ` sA.active; true Σ1,∆sA ` sA.exit; sA.exit,∆
′
sA

Σ1,∆
′
sA
` sA ; s′A[active = false],∆′′sA

Σ1,∆sA ` sA −→↓ s′A,∆′′sA
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Micro 1-2: PTrans of sP with active port pA, where (∆′pA ,∆
′′
sB

) ⇀ ∆′′′

Σ1 ` executed(Σ1, a1) ; false

Σ1,∆
0 ` a1.cond; true

Σ1,∆
0 ` a1.func; a1.func,∆

1

Σ1,∆
0 ` a1 ; a1,∆

1

Σ1,∆
1 ` a2.cond; false

Σ1,∆
1 ` a2 ; a2

∀ai ∈ sP .actions : i = 1...n, ∆′ ⇁ ∆0, ∆1 ⇀ ∆′′

...

Σ1,∆sB , pA ` sB −→↑ s′B,∆′′sB ∆pA ` pA ; p′A[¬active],∆′pA
(pA, sB) ∈ active ports(∆′, sP ) : ∆′′ ⇁ (∆pA ,∆sB )

Σ1,∆
′ ` sP −→ sP ,∆

′′′

Σ1 ` ∆′ =⇒ ∆′′′

Activation of sB (from port pA):

∆sB ` sB.active; false ∆sB ` sB ; s′B[active = true],∆′sB Σ1,∆
′
sB
` s.entry ; s.entry,∆′′sB

Σ2,∆sB , pA ` sB −→↑ s′B,∆′′sB

Micro 1-3: SProp of sP , with action execution as the condition of a2 is fulfilled. sB is the only active state, but does not specify any

actions or children to evaluate.

Σ1,∆
0 ` a1.cond; false

Σ1,∆
0 ` a1 ; a1

Σ1 ` executed(Σ1, a2) ; false

Σ1,∆
0 ` a2.cond; true

Σ1,∆
0 ` a2.func; a2.func,∆

1

Σ1,∆
0 ` a2 ; a2,∆

1

∀ai ∈ sP .actions : i = 1...n, ∆′′′ ⇁ ∆0, ∆1 ⇀ ∆1

∆sB ` sB.active; true sB.actions = ∅ sB.children = ∅
Σ2,∆sB ` sB −→ sB

sB ∈ active states(∆1, sP ) : ∆1 ⇁ ∆sB

Σ1,∆
′′′ ` sP −→ sP ,∆1

Σ1 ` ∆′′′ =⇒ ∆1
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Concurrent port activation (same destination)

Parent

A
pA

B
pB

C
pC

D

Scenario:

• Ports pA and pB activate both in macro step 2

• The condition of pC is fulfilled in macro step 3

Formal derivation:

Execution consists of three different steps:

(Ω0,Σ0,∆0) 7→ (Ω1,Σ1,∆1) 7→ (Ω2,Σ2,∆2) 7→ (Ω3,Σ3,∆3)

Where each is described by a corresponding macro step:

...
Ω0 ` (Σ0,∆0) ∗−→ (Σ1,∆1),Ω1

(Ω0,Σ0,∆0) 7→ (Ω1,Σ1,∆1)

...
Ω1 ` (Σ1,∆1) ∗−→ (Σ2,∆2),Ω2

(Ω1,Σ1,∆1) 7→ (Ω2,Σ2,∆2)

...
Ω2 ` (Σ2,∆2) ∗−→ (Σ3,∆3),Ω3

(Ω2,Σ2,∆2) 7→ (Ω3,Σ3,∆3)

In the following, environments Ω are omitted, as no services are involved in this scenario.
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Macro 1: The first micro step is assumed to activate sP , where the second micro step transitions the barrier

Σ1 = Ω0

...
Σ1,∆0, ∅ ` sP −→↑ s′P ,∆′′′

Σ1,∆0 ` sP −→ s′P ,∆
′′′

Σ1 ` ∆0 =⇒ ∆′′′
...

Σ1 ` ∆′′′ =⇒ ∆1

Σ1 ` ∆0 =⇒↓ ∆1

Ω0 ` (Σ0,∆0) ∗−→ (Σ1,∆1)

Micro 1-1: Activation of sP , where the sP .active premise is omitted. Application results in activation of first element b via Rule BAct1

∆0 ` sP ; s′P [active = true],∆′ Σ1,∆
′ ` sP .entry ; sP .entry,∆

′′

∆b ` b.active; false

∆b ` b; b′[active = true],∆′b

Σ1,∆b, ∅ ` b −→↑ b′,∆′b
b ∈ sP .first : ∆′′ ⇁ ∆b, ∆′b ⇀ ∆′′′

Σ1,∆0, ∅ ` sP −→↑ s′P ,∆′′′

Micro 1-2: Transitioning of barrier b via application of rule PTrans2 on sP . Parameter resolution and active check of sP is omitted for the

sake of breviety. Also context propagation is done by ∆′′′ ⇁ ∆b and (∆′sA∆′sB ,∆
′
b) ⇀ ∆1.

b ∈ active barriers(∆′′′, sP )

...
Σ1,∆sA , ∅ ` sA −→↑ s′A,∆′′sA

sA ∈ b.out : ∆b ⇁ ∆sA

...
Σ1,∆sB , ∅ ` sB −→↑ s′B,∆′′sB

sB ∈ b.out : ∆b ⇁ ∆sB ∆b ` b; b′[¬active],∆′b
Σ1,∆

′′′ ` sP −→ sP ,∆1

Σ1 ` ∆′′′ =⇒ ∆1



10
2Activation of sA:

∆sA ` sA.active; false ∆sA ` sA ; s′A[active = true],∆′sA Σ1,∆
′
sA
` s.entry ; s.entry,∆′′sA

Σ1,∆sA , ∅ ` sA −→↑ s′A,∆′′sA

Activation of sB:

∆sB ` sB.active; false ∆sB ` sB ; s′B[active = true],∆′sB Σ1,∆
′
sB
` s.entry ; s.entry,∆′′sB

Σ1,∆sB , ∅ ` sB −→↑ s′B,∆′′sB

Macro 2: Port conditions of pA and pB are fulfilled by scenario definition, which leads to activation of state sC . The macro step consists

of two micro steps:

Σ2 = Ω1

...
Σ2 ` ∆1 =⇒ ∆′

...
Σ2 ` ∆′ =⇒ ∆2

Σ2 ` ∆1 =⇒↓ ∆2

Ω1 ` (Σ1,∆1) ∗−→ (Σ2,∆2)

Micro 2-1: Application of SProp for sP and PTrigger for states sA and sB. The changed contexts propagate up by (∆′′′sA ,∆
′′′
sB

) ⇀ ∆′.

∆1 ` sP .active; true sP .actions = ∅

...
Σ2,∆sA ` sA −→ s′A,∆

′′′
sA

sA ∈ active states(∆1, sP ) : ∆1 ⇁ ∆sA

...
Σ2,∆sB ` sB −→ s′B,∆

′′′
sB

sB ∈ active states(∆1, sP ) : ∆1 ⇁ ∆sB

Σ2,∆1 ` sP −→ sP ,∆
′

Σ2 ` ∆1 =⇒ ∆′
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PTrigger of sA for port pA:

∆ ` sA.active; true

Σ2,∆sA ` pA.cond; true

...
Σ2,∆sA ` sA −→↓ s′A,∆′′sA ∆′′sA ` pA ; p′A[active = true],∆′′′sA

pA ∈ sA.ports :

Σ2,∆sA ` sA −→ s′A,∆
′′′
sA

Deactivation of sA:

∆sA ` sA.active; true Σ2,∆sA ` sA.exit; sA.exit,∆
′
sA

Σ2,∆
′
sA
` sA ; s′A[active = false],∆′′sA

Σ2,∆sA ` sA −→↓ s′A,∆′′sA

PTrigger of sB for port pB:

∆ ` sB.active; true

Σ2,∆sB ` pB.cond; true

...
Σ2,∆sB ` sB −→↓ s′B,∆′′sB ∆′′sB ` pB ; p′B[active = true],∆′′′sB

pB ∈ sB.ports :

Σ2,∆sB ` sB −→ s′B,∆
′′′
sB

Deactivation of sB:

∆sB ` sB.active; true sB.children = ∅ Σ2,∆sB ` sB.exit; sB.exit,∆
′
sB

Σ2,∆
′
sB
` sB ; s′B[active = false],∆′′sB

Σ2,∆sB ` sB −→↓ s′B,∆′′sB
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4Micro 2-2: Application of PTrans1 on sP with two active ports pA and pB, where evaluation order is not explicitly defined and this

derivation evaluates pA first. After evaluating all transitions, the contexts are propagated up with (∆′′sC ,∆
′
pA
,∆′pB ) ⇀ ∆2. Note that the

sP .active and action related premises are omitted.

...
Σ2,∆sC , pA ` sC −→↑ s′C ,∆′′sC

∆pA ` pA ; p′A[¬active],∆′pA

(pA, sC) ∈ active ports(∆′, sP ) : ∆′ ⇁ (∆pA ,∆sC )

∆sC ` sC .active; true

Σ2,∆sC , pB ` sC −→↑ sC
∆pB ` pB ; p′B[¬active],∆′pB

(pB, sC) ∈ active ports(∆′, sP ) : ∆′ ⇁ (∆pB ,∆sC )

Σ2,∆
′ ` sP −→ sP ,∆2

Σ2 ` ∆′ =⇒ ∆2

Activation of sC (from port pA):

∆sC ` sC .active; false ∆sC ` sC ; s′C [active = true],∆′sC Σ1,∆
′
sC
` s.entry ; s.entry,∆′′sC

Σ2,∆sC , pA ` sC −→↑ s′C ,∆′′sC

Macro 3: As port pC has its condition fulfilled in this macro step, application of SProp and PTrigger constitute the first micro step, where

a transition via rule PTrans1 represents the second micro step, before reaching quiescence

Σ3 = Ω2

...
Σ3 ` ∆2 =⇒ ∆′

...
Σ3 ` ∆′ =⇒ ∆3

Σ3 ` ∆2 =⇒↓ ∆3

Ω2 ` (Σ2,∆2) ∗−→ (Σ3,∆3)

Micro 3-1: SProp of sP with PTrigger of only active state sC

∆2 ` sP .active; true sP .actions = ∅

...
Σ3,∆sC ` sC −→ s′C ,∆

′′′
sC

sC ∈ active states(∆2, sP ) : ∆2 ⇁ ∆sC ∆′′′sC ⇀ ∆′

Σ3,∆2 ` sP −→ sP ,∆
′

Σ3 ` ∆2 =⇒ ∆′
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PTrigger of sC for port pC :

∆ ` sC .active; true

Σ3,∆sC ` pC .cond; true

...
Σ3,∆sC ` sC −→↓ s′C ,∆′′sC ∆′′sC ` pC ; p′C [active = true],∆′′′sC

pC ∈ sC .ports :

Σ3,∆sC ` sC −→ s′C ,∆
′′′
sC

Deactivation of sC :

∆sC ` sC .active; true sC .children = ∅ Σ3,∆sC ` sC .exit; sC .exit,∆
′
sC

Σ3,∆
′
sC
` sC ; s′C [active = false],∆′′sC

Σ3,∆sC ` sC −→↓ s′C ,∆′′sC

Micro 3-2: PTrans of sP with active port pC , where the active check of sP is omitted again.

sP .actions = ∅

...
Σ3,∆sD , pC ` sD −→↑ s′D,∆′′sD

∆pC ` pC ; p′C [active = false],∆′pC

(pC , sD) ∈ active ports(∆′, sP ) : ∆′ ⇁ (∆pC ,∆sD) (∆′pC ,∆
′′
sD

) ⇀ ∆3

Σ3,∆
′ ` sP −→ sP ,∆3

Σ3 ` ∆′ =⇒ ∆3

Activation of sD (from port pC):

∆sD ` sD.active; false ∆sD ` sD ; s′D[active = true],∆′sD Σ1,∆
′
sD
` s.entry ; s.entry,∆′′sD

Σ2,∆sD , pC ` sD −→↑ s′D,∆′′sD
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Concurrent port activation (different destinations)

Parent

pP

chi.C.active

A
pA

B
pB

C

D

Scenario:

• Ports pA and pB activate both in macro step 2

• Parental port pP triggers on activation of state C

• Will D get entered before pP preempts all active states in Parent? Does it depend

on evaluation order of transitions from pA and pB?

Formal derivation:

Execution consists of two different steps:

(Ω0,Σ0,∆0) 7→ (Ω1,Σ1,∆1) 7→ (Ω2,Σ2,∆2)

Where each is described by a corresponding macro step:

...
Ω0 ` (Σ0,∆0) ∗−→ (Σ1,∆1),Ω1

(Ω0,Σ0,∆0) 7→ (Ω1,Σ1,∆1)

...
Ω1 ` (Σ1,∆1) ∗−→ (Σ2,∆2),Ω2

(Ω1,Σ1,∆1) 7→ (Ω2,Σ2,∆2)

Macro 1: The first micro step is assumed to activate sP , where the second micro step

transitions the barrier

Σ1 = Ω0

...
Σ1,∆0, ∅ ` sP −→↑ s′P ,∆′′′

Σ1,∆0 ` sP −→ s′P ,∆
′′′

Σ1 ` ∆0 =⇒ ∆′′′
...

Σ1 ` ∆′′′ =⇒ ∆1

Σ1 ` ∆0 =⇒↓ ∆1

Ω0 ` (Σ0,∆0) ∗−→ (Σ1,∆1)
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Micro 1-1: Activation of sP , where the sP .active premise is omitted. Application results in activation of first element b via Rule BAct1

∆0 ` sP ; s′P [active = true],∆′ Σ1,∆
′ ` sP .entry ; sP .entry,∆

′′

∆b ` b.active; false

∆b ` b; b′[active = true],∆′b

Σ1,∆b, ∅ ` b −→↑ b′,∆′b
b ∈ sP .first : ∆′′ ⇁ ∆b, ∆′b ⇀ ∆′′′

Σ1,∆0, ∅ ` sP −→↑ s′P ,∆′′′

Micro 1-2: Transitioning of barrier b via application of rule PTrans2 on sP . Parameter resolution and active check of sP is omitted for the

sake of breviety. Also context propagation is done by ∆′′′ ⇁ ∆b and (∆′sA∆′sB ,∆
′
b) ⇀ ∆1.

b ∈ active barriers(∆′′′, sP )

...
Σ1,∆sA , ∅ ` sA −→↑ s′A,∆′′sA

sA ∈ b.out : ∆b ⇁ ∆sA

...
Σ1,∆sB , ∅ ` sB −→↑ s′B,∆′′sB

sB ∈ b.out : ∆b ⇁ ∆sB ∆b ` b; b′[¬active],∆′b
Σ1,∆

′′′ ` sP −→ sP ,∆1

Σ1 ` ∆′′′ =⇒ ∆1

Activation of sA:

∆sA ` sA.active; false ∆sA ` sA ; s′A[active = true],∆′sA Σ1,∆
′
sA
` s.entry ; s.entry,∆′′sA

Σ1,∆sA , ∅ ` sA −→↑ s′A,∆′′sA

Activation of sB:

∆sB ` sB.active; false ∆sB ` sB ; s′B[active = true],∆′sB Σ1,∆
′
sB
` s.entry ; s.entry,∆′′sB

Σ1,∆sB , ∅ ` sB −→↑ s′B,∆′′sB
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8Macro 2: Port conditions of pA and pB are fulfilled by scenario definition, which leads to activation of state sC and sD respectively. The

macro step then consists of three micro steps:

Σ2 = Ω1

...
Σ2 ` ∆1 =⇒ ∆′

...
Σ2 ` ∆′ =⇒ ∆′′

...
Σ2 ` ∆′′ =⇒ ∆2

Σ2 ` ∆1 =⇒↓ ∆2

Ω1 ` (Σ1,∆1) ∗−→ (Σ2,∆2)

Micro 2-1: Application of SProp for sP and PTrigger for states sA and sB. The changed contexts propagate up by (∆′′′sA ,∆
′′′
sB

) ⇀ ∆′.

∆1 ` sP .active; true sP .actions = ∅

...
Σ2,∆sA ` sA −→ s′A,∆

′′′
sA

sA ∈ active states(∆1, sP ) : ∆1 ⇁ ∆sA

...
Σ2,∆sB ` sB −→ s′B,∆

′′′
sB

sB ∈ active states(∆1, sP ) : ∆1 ⇁ ∆sB

Σ2,∆1 ` sP −→ sP ,∆
′

Σ2 ` ∆1 =⇒ ∆′

PTrigger of sA for port pA:

∆ ` sA.active; true

Σ2,∆sA ` pA.cond; true

...
Σ2,∆sA ` sA −→↓ s′A,∆′′sA ∆′′sA ` pA ; p′A[active = true],∆′′′sA

pA ∈ sA.ports :

Σ2,∆sA ` sA −→ s′A,∆
′′′
sA

Deactivation of sA:

∆sA ` sA.active; true Σ2,∆sA ` sA.exit; sA.exit,∆
′
sA

Σ2,∆
′
sA
` sA ; s′A[active = false],∆′′sA

Σ2,∆sA ` sA −→↓ s′A,∆′′sA
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PTrigger of sB for port pB:

∆ ` sB.active; true

Σ2,∆sB ` pB.cond; true

...
Σ2,∆sB ` sB −→↓ s′B,∆′′sB ∆′′sB ` pB ; p′B[active = true],∆′′′sB

pB ∈ sB.ports :

Σ2,∆sB ` sB −→ s′B,∆
′′′
sB

Deactivation of sB:

∆sB ` sB.active; true sB.children = ∅ Σ2,∆sB ` sB.exit; sB.exit,∆
′
sB

Σ2,∆
′
sB
` sB ; s′B[active = false],∆′′sB

Σ2,∆sB ` sB −→↓ s′B,∆′′sB

Micro 2-2: Application of PTrans1 on sP with two active ports pA and pB. Even though evaluation order is not explicitly defined, this

derivation evaluates pA first. The contexts propagated up with (∆′′sC ,∆
′
pA
,∆′′sD ,∆

′
pB

) ⇀ ∆′′. Note that the sP .active and action related

premises are omitted.

...
Σ2,∆sC , pA ` sC −→↑ s′C ,∆′′sC

∆pA ` pA ; p′A[¬active],∆′pA

(pA, sC) ∈ active ports(∆′, sP ) : ∆′ ⇁ (∆pA ,∆sC )

...
Σ2,∆sD , pB ` sD −→↑ sD,∆′′sD

∆pB ` pB ; p′B[¬active],∆′pB

(pB, sD) ∈ active ports(∆′, sP ) : ∆′ ⇁ (∆pB ,∆sD)

Σ2,∆
′ ` sP −→ sP ,∆

′′

Σ2 ` ∆′ =⇒ ∆′′

Activation of sC (from port pA):

∆sC ` sC .active; false ∆sC ` sC ; s′C [active = true],∆′sC Σ1,∆
′
sC
` s.entry ; s.entry,∆′′sC

Σ2,∆sC , pA ` sC −→↑ s′C ,∆′′sC
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0Activation of sD (from port pB):

∆sD ` sD.active; false ∆sD ` sD ; s′D[active = true],∆′sD Σ1,∆
′
sD
` s.entry ; s.entry,∆′′sD

Σ2,∆sD , pB ` sD −→↑ s′D,∆′′sD

Micro 2-3: PTrigger of sP is applicable as the port condition of pP is fulfilled

∆ ` sP .active; true

Σ2,∆sP ` pP .cond; true

...
Σ2,∆

′′ ` sP −→↓ s′P ,∆′′′ ∆′′′ ` pP ; p′P [active = true],∆2

pP ∈ sP .ports :

Σ2,∆
′′ ` sP −→ s′P ,∆2

Σ2 ` ∆′′ =⇒ ∆2

Deactivation of sP , where only deactivation of sC and sD is included here, the context propagates up with (∆′′sC ,∆
′′
sD

) ⇀ ∆′′′ and the

active check of sP is omitted.

...
Σ2,∆sC ` sC −→↓ s′C ,∆′′sC

sC ∈ sP .children : ∆′′ ⇁ ∆sC

...
Σ2,∆sD ` sD −→↓ s′D,∆′′sD

sD ∈ sP .children : ∆′′ ⇁ ∆sD Σ2,∆
′′′ ` sP .exit; sP .exit,∆

′′′′ Σ2,∆
′′′′ ` sP ; s′P [¬active],∆2

Σ2,∆
′′ ` sP −→↓ s′P ,∆2

Deactivation of sC and sD:

∆sC ` sC .active; true Σ2,∆sC ` sC .exit; sC .exit,∆
′
sC

Σ2,∆
′
sC
` sC ; s′C [active = false],∆′′sC

Σ2,∆sC ` sC −→↓ s′C ,∆′′sC

∆sD ` sD.active; true Σ2,∆sD ` sD.exit; sD.exit,∆
′
sD

Σ2,∆
′
sD
` sD ; s′D[active = false],∆′′sD

Σ2,∆sD ` sD −→↓ s′D,∆′′sD
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